The price of anarchy for a berth allocation game

被引:1
|
作者
Pan, Jiayin [3 ]
Chen, Cong [1 ,2 ]
Xu, Yinfeng [3 ,4 ]
机构
[1] Guangzhou Univ, Sch Management, Guangzhou, Peoples R China
[2] South China Univ Technol, Sch Business Adm, Guangzhou, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Management, Xian, Peoples R China
[4] State Key Lab Mfg Syst Engn, Xian, Peoples R China
关键词
Berth allocation game; Price of anarchy; Multiprocessor task scheduling;
D O I
10.1007/s10951-023-00791-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we investigate a berth allocation game involving m identical berths and n vessels. Each vessel selfishly selects a consecutive set of berths for unloading, with the objective of minimizing its own cost represented by the maximum load among the chosen berths. The social cost is defined as the makespan, i.e., the maximum load over all berths. Our game generalizes classical machine scheduling games where jobs (vessels) may require multiple consecutive machines (berths). We analyze the price of anarchy (PoA) of the berth allocation game, which quantifies the impact of selfish behaviors of vessels. Specifically, we first consider a special case where each job can occupy at most two consecutive machines, and derive exact upper and lower bounds for the PoA based on the number of machines m. We show that the PoA asymptotically approaches 94\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{9}{4}$$\end{document}. For the general case where each job can occupy an arbitrary number of consecutive machines, we obtain a tight bound for the PoA, which is Theta logmloglogm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta \left( \frac{\log m}{\log \log m}\right) $$\end{document}.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [21] The Price of Anarchy in Network Creation Games
    Demaine, Erik D.
    Hajiaghayi, MohammadTaghi
    Mahini, Hamid
    Zadimoghaddam, Morteza
    PODC'07: PROCEEDINGS OF THE 26TH ANNUAL ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2007, : 292 - 298
  • [22] On the Price of Anarchy for flows over time
    Correa, Jose
    Cristi, Andres
    Oosterwijk, Tim
    ACM EC '19: PROCEEDINGS OF THE 2019 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2019, : 559 - 577
  • [23] Tight bounds for the price of anarchy of simultaneous
    Christodoulou G.
    Kovács A.
    Sgouritsa A.
    Tang B.
    ACM Transactions on Economics and Computation, 2016, 4 (02)
  • [24] The Price of Anarchy for Instantaneous Dynamic Equilibria
    Graf, Lukas
    Harks, Tobias
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 48 (04) : 2167 - 2195
  • [25] On the Price of Anarchy for Flows over Time
    Correa, Jose
    Cristi, Andres
    Oosterwijk, Tim
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (02) : 1394 - 1411
  • [26] The Price of Anarchy in Network Creation Games
    Demaine, Erik D.
    Hajiaghayi, Mohammadtaghi
    Mahini, Hamid
    Zadimoghaddam, Morteza
    ACM TRANSACTIONS ON ALGORITHMS, 2012, 8 (02)
  • [27] Altruism and its impact on the price of anarchy
    Institute of Information Management, National Chiao Tung University, Taiwan
    不详
    不详
    不详
    ACM Trans. Econ. Comput., 4
  • [28] Overcoming the Price of Anarchy by Steering with Recommendations
    Carissimo, Cesare
    Korecki, Marcin
    Dailisan, Damian
    NEUROCOMPUTING, 2025, 639
  • [29] THE PRICE OF ANARCHY FOR RESTRICTED PARALLEL LINKS
    Gairing, Martin
    Lucking, Thomas
    Mavronicolas, Marios
    Monien, Burkhard
    PARALLEL PROCESSING LETTERS, 2006, 16 (01) : 117 - 131
  • [30] The Price of Anarchy in Parallel Queues Revisited
    Anselmi, Jonatha
    Gaujal, Bruno
    SIGMETRICS 2010: PROCEEDINGS OF THE 2010 ACM SIGMETRICS INTERNATIONAL CONFERENCE ON MEASUREMENT AND MODELING OF COMPUTER SYSTEMS, 2010, 38 (01): : 353 - 354