Multi-phase iterative learning control for high-order systems with arbitrary initial shifts

被引:4
|
作者
Chen, Dongjie [1 ]
Xu, Ying [2 ]
Lu, Tiantian [1 ]
Li, Guojun [1 ]
机构
[1] Zhejiang Police Coll, Basic Courses Dept, Hangzhou 310053, Peoples R China
[2] Hangzhou Xiangyun Informat Technol Co Ltd, Hangzhou 310053, Peoples R China
关键词
Iterative learning control; Initial rectifying; Second -order differential equation; Convergence; MULTIAGENT SYSTEMS; MACHINE;
D O I
10.1016/j.matcom.2023.09.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Aiming at the second-order tracking system with arbitrary initial shifts, this paper presents a multi-phase iterative learning control strategy. Firstly, utilizing the form of solution of the second-order non-homogeneous linear differential equation with constant coefficients and the initial shifts, we can select the appropriate control gain to ensure that the second-order systems are stable and reach the stable output after a fixed time. Secondly, on the premise that the second-order systems have reached the fixed output, two methods are proposed for rectifying the fixed shift, namely, shifts rectifying control and varied trajectory control. Theoretical analysis shows that the multi-stage iterative learning control strategy proposed in this paper can ensure that the second-order systems achieve complete tracking in the specified interval. Finally, the simulation examples affirm the validation of the designed algorithms.(c) 2023 Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in Simulation (IMACS).
引用
收藏
页码:231 / 245
页数:15
相关论文
共 50 条
  • [21] High-Order -Type Iterative Learning Control for Fractional-Order Nonlinear Time-Delay Systems
    Lan, Yong-Hong
    Zhou, Yong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) : 153 - 166
  • [22] CONSENSUS TRACKING ITERATIVE LEARNING CONTROL OF SECOND-ORDER MULTI-AGENT SYSTEMS
    Lu, Tiantian
    Fan, Yingsheng
    Han, Yishi
    Chen, Huiyun
    LI, Guojun
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2023, 24 (01): : 81 - 93
  • [23] High-order model-free adaptive iterative learning control
    Xu, Jian
    Lin, Na
    Chi, Ronghu
    Li, Xueqiang
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (10) : 1886 - 1895
  • [24] A Survey on High-Order Internal Model Based Iterative Learning Control
    Yu, Miao
    Chai, Sheng
    IEEE ACCESS, 2019, 7 : 127024 - 127031
  • [25] High-order parameter-optimization iterative learning control algorithm
    Pang, Bo
    Shao, Cheng
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2015, 32 (04): : 561 - 567
  • [26] Basis functions and parameter optimisation in high-order iterative learning control
    Hätönen, J
    Owens, DH
    Feng, K
    AUTOMATICA, 2006, 42 (02) : 287 - 294
  • [27] A Novel Terminal Iterative Learning Control with High-order Error Information
    Chi, Ronghu
    Liu, Yu
    Hou, Zhongsheng
    Lin, Shangtai
    Chien, Chiang-Ju
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1095 - 1099
  • [28] Tracking Ability of High-Order Fully Actuated Iterative Learning Control
    Zhang, Zeyi
    Jiang, Hao
    Shen, Dong
    2024 3RD CONFERENCE ON FULLY ACTUATED SYSTEM THEORY AND APPLICATIONS, FASTA 2024, 2024, : 1095 - 1100
  • [29] Discrete-time adaptive iterative learning control for high-order nonlinear systems with unknown control directions
    Yu, Miao
    Wang, Jiasen
    Qi, Donglian
    INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (02) : 299 - 308
  • [30] Iterative Learning Control for Linear Discrete-Time Systems with Unknown High-Order Internal Models
    Zhu Qiao
    Xu Jian-Xin
    Huang Deqing
    Yue Jun-Zhou
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3078 - 3083