CRISPR-Cas9-Mediated Cytosine Base Editing Screen for the Functional Assessment of CALR Intron Variants in Japanese Encephalitis Virus Replication

被引:4
作者
Xiong, Youcai [1 ,2 ]
Xi, Xiaoning [1 ,2 ]
Xiang, Yue [1 ,2 ]
Li, Sheng [1 ,2 ]
Liu, Hailong [1 ,2 ]
Su, Yinyu [1 ,2 ]
He, Ruigao [1 ,2 ]
Xiong, Chong [1 ,2 ]
Xu, Bingrong [1 ,2 ]
Wang, Xinyi [1 ,2 ]
Fu, Liangliang [1 ,2 ,3 ]
Zhao, Changzhi [1 ,2 ]
Han, Xiaosong [1 ,2 ]
Li, Xinyun [1 ,2 ,3 ,4 ]
Xie, Shengsong [1 ,2 ,3 ]
Ruan, Jinxue [1 ,2 ,3 ]
机构
[1] Huazhong Agr Univ, Key Lab Agr Anim Genet Breeding & Reprod, Minist Educ, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Key Lab Swine Genet & Breeding, Minist Agr & Rural Affairs, Wuhan 430070, Peoples R China
[3] Huazhong Agr Univ, Cooperat Innovat Ctr Sustainable Pig Prod, Wuhan 430070, Peoples R China
[4] Frontiers Sci Ctr Anim Breeding & Sustainable Prod, Hubei Hongshan Lab, Wuhan 430070, Peoples R China
关键词
base editing; CALR; Japanese encephalitis virus; saturation point mutation screening; ERROR-PRONE PCR; DIRECTED EVOLUTION; RANDOM MUTAGENESIS; GENOMIC DNA; EFFICIENT; OFFINDER;
D O I
10.3390/ijms241713331
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes viral encephalitis in humans, pigs and other mammals across Asia and the Western Pacific. Genetic screening tools such as CRISPR screening, DNA sequencing and RNA interference have greatly improved our understanding of JEV replication and its potential antiviral approaches. However, information on exon and intron mutations associated with JEV replication is still scanty. CRISPR-Cas9-mediated cytosine base editing can efficiently generate C: G-to-T: A conversion in the genome of living cells. One intriguing application of base editing is to screen pivotal variants for gene function that is yet to be achieved in pigs. Here, we illustrate that CRISPR-Cas9-mediated cytosine base editor, known as AncBE4max, can be used for the functional analysis of calreticulin (CALR) variants. We conducted a CRISPR-Cas9-mediated cytosine base editing screen using 457 single guide RNAs (sgRNAs) against all exons and introns of CALR to identify loss-of-function variants involved in JEV replication. We unexpectedly uncovered that two enriched sgRNAs targeted the same site in intron-2 of the CALR gene. We found that mutating four consecutive G bases in the intron-2 of the CALR gene to four A bases significantly inhibited JEV replication. Thus, we established a CRISPR-Cas9-mediated cytosine-base-editing point mutation screening technique in pigs. Our results suggest that CRISPR-mediated base editing is a powerful tool for identifying the antiviral functions of variants in the coding and noncoding regions of the CALR gene.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[2]   Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases [J].
Bae, Sangsu ;
Park, Jeongbin ;
Kim, Jin-Soo .
BIOINFORMATICS, 2014, 30 (10) :1473-1475
[3]   Regulatory genomic circuitry of human disease loci by integrative epigenomics [J].
Boix, Carles A. ;
James, Benjamin T. ;
Park, Yongjin P. ;
Meuleman, Wouter ;
Kellis, Manolis .
NATURE, 2021, 590 (7845) :300-307
[4]   Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor [J].
Chen, Haiqi ;
Liu, Sophia ;
Padula, Samuel ;
Lesman, Daniel ;
Griswold, Kettner ;
Lin, Allen ;
Zhao, Tongtong ;
Marshall, Jamie L. ;
Chen, Fei .
NATURE BIOTECHNOLOGY, 2020, 38 (02) :165-+
[5]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[6]  
Copp JN, 2014, METHODS MOL BIOL, V1179, P3, DOI 10.1007/978-1-4939-1053-3_1
[7]   Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering [J].
Cravens, Aaron ;
Jamil, Osman K. ;
Kong, Deze ;
Sockolosky, Jonathan T. ;
Smolke, Christina D. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Cas9 activates the p53 pathway and selects for p53-inactivating mutations [J].
Enache, Oana M. ;
Rendo, Veronica ;
Abdusamad, Mai ;
Lam, Daniel ;
Davison, Desiree ;
Pale, Sangita ;
Currimjee, Naomi ;
Hess, Julian ;
Pantel, Sasha ;
Nag, Anwesha ;
Thorner, Aaron R. ;
Doench, John G. ;
Vazquez, Francisca ;
Beroukhim, Rameen ;
Golub, Todd R. ;
Ben-David, Uri .
NATURE GENETICS, 2020, 52 (07) :662-+
[9]   Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage [J].
Gaudelli, Nicole M. ;
Komor, Alexis C. ;
Rees, Holly A. ;
Packer, Michael S. ;
Badran, Ahmed H. ;
Bryson, David I. ;
Liu, David R. .
NATURE, 2017, 551 (7681) :464-+
[10]  
Hess GT, 2016, NAT METHODS, V13, P1036, DOI [10.1038/nmeth.4038, 10.1038/NMETH.4038]