MRI-Based Surrogate Imaging Markers of Aggressiveness in Prostate Cancer: Development of a Machine Learning Model Based on Radiomic Features

被引:8
作者
Dominguez, Ignacio [1 ]
Rios-Ibacache, Odette [2 ,3 ]
Caprile, Paola [2 ,4 ]
Gonzalez, Jose [5 ]
San Francisco, Ignacio F. [6 ]
Besa, Cecilia [1 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Sch Med, Dept Radiol, Santiago 8320000, Chile
[2] Pontificia Univ Catolica Chile, Inst Phys, Av Vicuna Mackenna 4860, Macul 7820436, Santiago, Chile
[3] McGill Univ, Med Phys Unit, Montreal, PQ H4A 3J1, Canada
[4] ANID, iHEALTH, Millennium Inst Intelligent Healthcare Engn, Macul 7820436, Santiago, Chile
[5] Pontificia Univ Catolica Chile, Sch Med, Santiago 8320000, Chile
[6] Pontificia Univ Catolica Chile, Sch Med, Dept Urol, Santiago 8320000, Chile
关键词
prostate cancer; Gleason score; texture analysis; bpMRI; machine learning; radiomics; BIOPSY; MEN; PSA;
D O I
10.3390/diagnostics13172779
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This study aimed to develop a noninvasive Machine Learning (ML) model to identify clinically significant prostate cancer (csPCa) according to Gleason Score (GS) based on biparametric MRI (bpMRI) radiomic features and clinical information. Methods: This retrospective study included 86 adult Hispanic men (60 & PLUSMN; 8.2 years, median prostate-specific antigen density (PSA-D) 0.15 ng/mL2) with PCa who underwent prebiopsy 3T MRI followed by targeted MRI-ultrasound fusion and systematic biopsy. Two observers performed 2D segmentation of lesions in T2WI/ADC images. We classified csPCa (GS & GE; 7) vs. non-csPCa (GS = 6). Univariate statistical tests were performed for different parameters, including prostate volume (PV), PSA-D, PI-RADS, and radiomic features. Multivariate models were built using the automatic feature selection algorithm Recursive Feature Elimination (RFE) and different classifiers. A stratified split separated the train/test (80%) and validation (20%) sets. Results: Radiomic features derived from T2WI/ADC are associated with GS in patients with PCa. The best model found was multivariate, including image (T2WI/ADC) and clinical (PV and PSA-D) information. The validation area under the curve (AUC) was 0.80 for differentiating csPCa from non-csPCa, exhibiting better performance than PI-RADS (AUC: 0.71) and PSA-D (AUC: 0.78). Conclusion: Our multivariate ML model outperforms PI-RADS v2.1 and established clinical indicators like PSA-D in classifying csPCa accurately. This underscores MRI-derived radiomics' (T2WI/ADC) potential as a robust biomarker for assessing PCa aggressiveness in Hispanic patients.
引用
收藏
页数:13
相关论文
共 44 条
[1]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[2]   HETEROGENEITY OF PROSTATE-CANCER IN RADICAL PROSTATECTOMY SPECIMENS [J].
AIHARA, M ;
WHEELER, TM ;
OHORI, M ;
SCARDINO, PT .
UROLOGY, 1994, 43 (01) :60-66
[3]  
Benavoli A, 2017, J MACH LEARN RES, V18
[4]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[5]   PSA Density Help to Identify Patients With Elevated PSA Due to Prostate Cancer Rather Than Intraprostatic Inflammation: A Prospective Single Center Study [J].
Bruno, Salvatore M. ;
Falagario, Ugo G. ;
d'Altilia, Nicola ;
Recchia, Marco ;
Mancini, Vito ;
Selvaggio, Oscar ;
Sanguedolce, Francesca ;
Del Giudice, Francesco ;
Maggi, Martina ;
Ferro, Matteo ;
Porreca, Angelo ;
Sciarra, Alessandro ;
De Berardinis, Ettore ;
Bettocchi, Carlo ;
Busetto, Gian Maria ;
Cormio, Luigi ;
Carrieri, Giuseppe .
FRONTIERS IN ONCOLOGY, 2021, 11
[6]   A Framework of Analysis to Facilitate the Harmonization of Multicenter Radiomic Features in Prostate Cancer [J].
Castaldo, Rossana ;
Brancato, Valentina ;
Cavaliere, Carlo ;
Trama, Francesco ;
Illiano, Ester ;
Costantini, Elisabetta ;
Ragozzino, Alfonso ;
Salvatore, Marco ;
Nicolai, Emanuele ;
Franzese, Monica .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (01)
[7]   Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications [J].
Castillo T., Jose M. ;
Arif, Muhammad ;
Niessen, Wiro J. ;
Schoots, Ivo G. ;
Veenland, Jifke F. .
CANCERS, 2020, 12 (06) :1-13
[8]  
Corder G.W., 2009, NONPARAMETRIC STAT N, DOI 10.1002/9781118165881
[9]   Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis [J].
Cuocolo, Renato ;
Cipullo, Maria Brunella ;
Stanzione, Arnaldo ;
Romeo, Valeria ;
Green, Roberta ;
Cantoni, Valeria ;
Ponsiglione, Andrea ;
Ugga, Lorenzo ;
Imbriaco, Massimo .
EUROPEAN RADIOLOGY, 2020, 30 (12) :6877-6887
[10]   Cancer-specific mortality after surgery or radiation for patients with clinically localized prostate cancer managed during the prostate-specific antigen era [J].
D'Amico, AV ;
Moul, J ;
Carroll, PR ;
Sun, L ;
Lubeck, D ;
Chen, MH .
JOURNAL OF CLINICAL ONCOLOGY, 2003, 21 (11) :2163-2172