LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs

被引:73
作者
Chen, Yukang [1 ]
Liu, Jianhui [2 ]
Zhang, Xiangyu [3 ]
Qi, Xiaojuan [2 ]
Jia, Jiaya [1 ,4 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Hong Kong, Peoples R China
[3] MEGVII, Beijing, Peoples R China
[4] SmartMore, Hong Kong, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
D O I
10.1109/CVPR52729.2023.01296
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advance in 2D CNNs has revealed that large kernels are important. However, when directly applying large convolutional kernels in 3D CNNs, severe difficulties are met, where those successful module designs in 2D become surprisingly ineffective on 3D networks, including the popular depth-wise convolution. To address this vital challenge, we instead propose the spatial-wise partition convolution and its large-kernel module. As a result, it avoids the optimization and efficiency issues of naive 3D large kernels. Our large-kernel 3D CNN network, LargeKernel3D, yields notable improvement in 3D tasks of semantic segmentation and object detection. It achieves 73.9% mIoU on the ScanNetv2 semantic segmentation and 72.8% NDS nuScenes object detection benchmarks, ranking 1st on the nuScenes LIDAR leaderboard. The performance further boosts to 74.2% NDS with a simple multi-modal fusion. In addition, LargeKernel3D can be scaled to 17x17x17 kernel size on Waymo 3D object detection. For the first time, we show that large kernels are feasible and essential for 3D visual tasks. Our code and models is available at github.com/dvlab-research/LargeKernel3D.
引用
收藏
页码:13488 / 13498
页数:11
相关论文
共 79 条
[51]  
Rao Y., 2021, Advances in neural information processing systems, P980
[52]  
Romero David W., 2021, CKCONV CONTINUOUS KE
[53]  
SELVAGGIO G, 2020, J MACHINE LEARNING R, V11, DOI DOI 10.1038/S41467-020-15299-5
[54]  
Shaw Peter., 2018, P 2018 C N AM CHAPT, DOI [DOI 10.18653/V1/N18-2074, 10.18653/v1/N18-2074]
[55]   PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [J].
Shi, Shaoshuai ;
Guo, Chaoxu ;
Jiang, Li ;
Wang, Zhe ;
Shi, Jianping ;
Wang, Xiaogang ;
Li, Hongsheng .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :10526-10535
[56]   From Points to Parts: 3D Object Detection From Point Cloud With Part-Aware and Part-Aggregation Network [J].
Shi, Shaoshuai ;
Wang, Zhe ;
Shi, Jianping ;
Wang, Xiaogang ;
Li, Hongsheng .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (08) :2647-2664
[57]   Scalability in Perception for Autonomous Driving: Waymo Open Dataset [J].
Sun, Pei ;
Kretzschmar, Henrik ;
Dotiwalla, Xerxes ;
Chouard, Aurelien ;
Patnaik, Vijaysai ;
Tsui, Paul ;
Guo, James ;
Zhou, Yin ;
Chai, Yuning ;
Caine, Benjamin ;
Vasudevan, Vijay ;
Han, Wei ;
Ngiam, Jiquan ;
Zhao, Hang ;
Timofeev, Aleksei ;
Ettinger, Scott ;
Krivokon, Maxim ;
Gao, Amy ;
Joshi, Aditya ;
Zhang, Yu ;
Shlens, Jonathon ;
Chen, Zhifeng ;
Anguelov, Dragomir .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :2443-2451
[58]  
Sun Pei, 2022, Swformer: Sparse window transformer for 3d object detection in point clouds
[59]   Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution [J].
Tang, Haotian ;
Liu, Zhijian ;
Zhao, Shengyu ;
Lin, Yujun ;
Lin, Ji ;
Wang, Hanrui ;
Han, Song .
COMPUTER VISION - ECCV 2020, PT XXVIII, 2020, 12373 :685-702
[60]   KPConv: Flexible and Deformable Convolution for Point Clouds [J].
Thomas, Hugues ;
Qi, Charles R. ;
Deschaud, Jean-Emmanuel ;
Marcotegui, Beatriz ;
Goulette, Francois ;
Guibas, Leonidas J. .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6420-6429