Constraining nuclear symmetry energy with the charge radii of mirror-pair nuclei

被引:27
作者
An, Rong [1 ,2 ,3 ]
Sun, Shuai [1 ]
Cao, Li-Gang [1 ,2 ]
Zhang, Feng-Shou [1 ,2 ,4 ]
机构
[1] Beijing Normal Univ, Coll Nucl Sci & Technol, Key Lab Beam Technol, Minist Educ, Beijing 100875, Peoples R China
[2] Beijing Acad Sci & Technol, Inst Radiat Technol, Key Lab Beam Technol, Minist Educ, Beijing 100875, Peoples R China
[3] Chinese Acad Sci, Inst Modern Phys, CAS Key Lab High Precis Nucl Spect, Lanzhou 730000, Peoples R China
[4] Natl Lab Heavy Ion Accelerator Lanzhou, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Symmetry energy; Charge radii; Mirror nuclei; NEUTRON SKIN THICKNESS; SUBSATURATION DENSITIES; SKYRME PARAMETRIZATION; ISOSPIN; DIFFERENCE; RESONANCES; SUBNUCLEAR; EQUATION; STATE;
D O I
10.1007/s41365-023-01269-1
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The nuclear charge radius plays a vital role in determining the equation of state of isospin asymmetric nuclear matter. Based on the correlation between the differences in charge radii of mirror-partner nuclei and the slope parameter (L) of symmetry energy at the nuclear saturation density, an analysis of the calibrated slope parameter L was performed in finite nuclei. In this study, relativistic and nonrelativistic energy density functionals were employed to constrain the nuclear symmetry energy through the available databases of the mirror-pair nuclei Ca-36-S-36, Ca-38-Ar-38, and Ni-54-Fe-54. The deduced nuclear symmetry energy was located in the range 29.89-31.85 MeV, and L of the symmetry energy essentially covered the range 22.50-51.55 MeV at the saturation density. Moreover, the extracted L-S at the sensitivity density p(s )= 0.10 fm(-3) was located in the interval range 30.52-39.76 MeV.
引用
收藏
页数:10
相关论文
共 89 条
[1]   Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering [J].
Adhikari, D. ;
Albataineh, H. ;
Androic, D. ;
Aniol, K. ;
Armstrong, D. S. ;
Averett, T. ;
Gayoso, C. Ayerbe ;
Barcus, S. ;
Bellini, V ;
Beminiwattha, R. S. ;
Benesch, J. F. ;
Bhatt, H. ;
Pathak, D. Bhatta ;
Bhetuwal, D. ;
Blaikie, B. ;
Campagna, Q. ;
Camsonne, A. ;
Cates, G. D. ;
Chen, Y. ;
Clarke, C. ;
Cornejo, J. C. ;
Dusa, S. Covrig ;
Datta, P. ;
Deshpande, A. ;
Dutta, D. ;
Feldman, C. ;
Fuchey, E. ;
Gal, C. ;
Gaskell, D. ;
Gautam, T. ;
Gericke, M. ;
Ghosh, C. ;
Halilovic, I ;
Hansen, J-O ;
Hauenstein, F. ;
Henry, W. ;
Horowitz, C. J. ;
Jantzi, C. ;
Jian, S. ;
Johnston, S. ;
Jones, D. C. ;
Karki, B. ;
Katugampola, S. ;
Keppel, C. ;
King, P. M. ;
King, D. E. ;
Knauss, M. ;
Kumar, K. S. ;
Kutz, T. ;
Lashley-Colthirst, N. .
PHYSICAL REVIEW LETTERS, 2021, 126 (17)
[2]   Charge radii of potassium isotopes in the RMF (BCS)* approach [J].
An, Rong ;
Zhang, Shi-Sheng ;
Geng, Li-Sheng ;
Zhang, Feng-Shou .
CHINESE PHYSICS C, 2022, 46 (05)
[3]   Odd-even staggering and shell effects of charge radii for nuclei with even Z from 36 to 38 and from 52 to 62 [J].
An, Rong ;
Jiang, Xiang ;
Cao, Li-Gang ;
Zhang, Feng-Shou .
PHYSICAL REVIEW C, 2022, 105 (01)
[4]   Novel ansatz for charge radii in density functional theories [J].
An, Rong ;
Geng, Li-Sheng ;
Zhang, Shi-Sheng .
PHYSICAL REVIEW C, 2020, 102 (02)
[5]   Particle number conserving BCS approach in the relativistic mean field model and its application to 32-74Ca [J].
An, Rong ;
Geng, Lisheng ;
Zhang, Shisheng ;
Liu, Lang .
CHINESE PHYSICS C, 2018, 42 (11)
[6]  
aps, 2022, PHYS REV LETT, DOI [10.1103/PhysRevLett.129.042501, DOI 10.1103/PHYSREVLETT.129.042501]
[7]   The nuclear symmetry energy [J].
Baldo, M. ;
Burgio, G. F. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2016, 91 :203-258
[8]   Self-consistent mean-field models for nuclear structure [J].
Bender, M ;
Heenen, PH ;
Reinhard, PG .
REVIEWS OF MODERN PHYSICS, 2003, 75 (01) :121-180
[9]  
Birkhan J., 2017, Phys. Rev. Lett, V118, DOI [10.1103/PhysRevLett.118.252501, DOI 10.1103/PHYSREVLETT.118.252501]
[10]   Implications of the 36Ca-36S and 38Ca-38Ar difference in mirror charge radii on the neutron matter equation of state [J].
Brown, B. A. ;
Minamisono, K. ;
Piekarewicz, J. ;
Hergert, H. ;
Garand, D. ;
Klose, A. ;
Koenig, K. ;
Lantis, J. D. ;
Liu, Y. ;
Maass, B. ;
Miller, A. J. ;
Noertershaeuser, W. ;
Pineda, S., V ;
Powel, R. C. ;
Rossi, D. M. ;
Sommer, F. ;
Sumithrarachchi, C. ;
Teigelhoefer, A. ;
Watkins, J. ;
Wirth, R. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)