New life-span results for the nonlinear heat equation

被引:4
|
作者
Tayachi, Slim [1 ]
Weissler, Fred B. [2 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Lab Equat Der Partielles LR03ES04, Tunis 2092, Tunisia
[2] Univ Sorbonne Paris Nord, CNRS UMR LAGA 7539, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
关键词
Nonlinear heat equation; Hardy-Henon parabolic equations; Local well-posedness; Blowup; Life-span; SEMILINEAR PARABOLIC EQUATION; LARGE TIME BEHAVIOR; LARGE INITIAL DATA; BLOW-UP; CAUCHY-PROBLEM; CRITICAL EXPONENT; GLOBAL EXISTENCE; WELL-POSEDNESS; ZERO POINTS; DIFFUSION;
D O I
10.1016/j.jde.2023.07.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain new estimates for the existence time of the maximal solutions to the nonlinear heat equation regular, sign-changing, as well as non polynomial decaying initial data are considered. The proofs of the lower-bound estimates of life-span are based on the local construction of solutions. The proofs of the upperbounds exploit a well-known necessary condition for the existence of nonnegative solutions. In addition, we establish new results for life-span using dilation methods and we give new life-span estimates for Hardy & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:564 / 625
页数:62
相关论文
共 50 条
  • [31] Future time perspective and life-span
    Francisco Diaz-Morales, Juan
    ANALES DE PSICOLOGIA, 2006, 22 (01): : 52 - 59
  • [32] LIFE-SPAN OF CLASSICAL SOLUTIONS TO HYPERBOLIC GEOMETRY FLOW EQUATION IN SEVERAL SPACE DIMENSIONS
    Kong, Dexing
    Liu, Qi
    Song, Changming
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (03) : 679 - 694
  • [33] LIFE-SPAN OF CLASSICAL SOLUTIONS TO HYPERBOLIC GEOMETRY FLOW EQUATION IN SEVERAL SPACE DIMENSIONS
    孔德兴
    刘琦
    宋长明
    Acta Mathematica Scientia, 2017, (03) : 679 - 694
  • [34] Blowup and life span of solutions for a semilinear parabolic equation
    Mizoguchi, N
    Yanagida, E
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) : 1434 - 1446
  • [35] Estimates for the life-span of the solutions for some semilinear wave equations
    Li, Meng-Rong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (02) : 417 - 432
  • [36] Network structural dependency in the human connectome across the life-span
    Schirmer, Markus D.
    Chung, Ai Wern
    Grant, P. Ellen
    Rost, Natalia S.
    NETWORK NEUROSCIENCE, 2019, 3 (03): : 792 - 806
  • [37] CAN AN IMPROVED ENVIRONMENT CAUSE MAXIMUM LIFE-SPAN TO DECREASE - COMMENTS ON LIFE-SPAN CRITERIA AND LONGITUDINAL GOMPERTZIAN ANALYSIS
    HIRSCH, HR
    EXPERIMENTAL GERONTOLOGY, 1994, 29 (02) : 119 - 137
  • [38] LIFE-SPAN DIFFERENCES IN DIGOXIN UPTAKE AND EXCRETION
    CHEN, TS
    WABNER, CL
    EXPERIMENTAL GERONTOLOGY, 1990, 25 (06) : 575 - 583
  • [39] Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data
    Ikeda, Masahiro
    Sobajima, Motohiro
    MATHEMATISCHE ANNALEN, 2018, 372 (3-4) : 1017 - 1040
  • [40] Life-span of Blowup Solutions to Semilinear Wave Equation with Space-dependent Critical Damping
    Ikeda, Masahiro
    Sobajima, Motohiro
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2021, 64 (02): : 137 - 162