ADU-Net: Semantic segmentation of satellite imagery for land cover classification

被引:4
作者
Talha, Muhammad [1 ]
Bhatti, Farrukh A. [1 ]
Ghuffar, Sajid [2 ]
Zafar, Hamza [1 ]
机构
[1] Inst Space Technol, Dept Elect Engn, iVISION Lab, Islamabad 45730, Pakistan
[2] Inst Space Technol, Dept Space Sci, Islamabad 45730, Pakistan
关键词
Remote sensing; GID dataset; Land cover; Classification; Semantic segmentation; Attention mechanism; FEATURES; DECODER;
D O I
10.1016/j.asr.2023.05.007
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Semantic Segmentation is an important problem in many vision related tasks. Land use and land cover classification involves semantic segmentation of satellite imagery and plays a vital role in many applications. In this paper, we propose an extended U-Net architecture with dense decoder connections and attention mechanism for pixel wise classification of satellite imagery named Attention Dense UNet (ADU-Net). We further evaluate the effect of different upsampling strategies in the decoder part of the U-Net architecture. We evaluate our models on the Gaofen Image Dataset (GID) for landcover classification consisting of five classes: built-up, forest, farmland, meadow and water. The experiments on the GID dataset show better performance than the previous approaches. Our proposed architecture delivers more than 4% higher mIoU and F1-score than the baseline U-Net. Moreover, our proposed architecture achieves an F1score of 87.21% and mIoU of 77.66% on the GID dataset. Our evaluations shows that data-dependent upsampling layer achieves higher accuracy than the Transposed Convolution, Pixel Shuffle and Bilinear upsampling layers. & COPY; 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1780 / 1788
页数:9
相关论文
共 47 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   Dense Decoder Shortcut Connections for Single-Pass Semantic Segmentation [J].
Bilinski, Piotr ;
Prisacariu, Victor .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6596-6605
[3]  
Boguszewski A., 2022, arXiv
[4]   An Improved Res-UNet Model for Tree Species Classification Using Airborne High-Resolution Images [J].
Cao, Kaili ;
Zhang, Xiaoli .
REMOTE SENSING, 2020, 12 (07)
[5]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   Attention to Scale: Scale-aware Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Yang, Yi ;
Wang, Jiang ;
Xu, Wei ;
Yuille, Alan L. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3640-3649
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]   Semantic classification of urban buildings combining VHR image and GIS data: An improved random forest approach [J].
Du, Shihong ;
Zhang, Fangli ;
Zhang, Xiuyuan .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 105 :107-119
[10]  
Dumoulin V, 2018, Arxiv, DOI [arXiv:1603.07285, 10.48550/arXiv.1603.07285]