Dynamic Offloading for Edge Computing-Assisted Metaverse Systems

被引:22
作者
Hoa, Nguyen Tien [1 ]
Huy, Le Van [1 ]
Son, Bui Duc [1 ]
Luong, Nguyen Cong [2 ]
Niyato, Dusit [3 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Elect & Elect Engn, Hanoi 100000, Vietnam
[2] Phenikaa Univ, Fac Comp Sci, Hanoi 12116, Vietnam
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
关键词
~Metaverse; digital twin; promptness; edge computing; deep reinforcement learning;
D O I
10.1109/LCOMM.2023.3274649
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we investigate an edge computing-assisted Metaverse system. This system involves a virtual service provider (VSP), which can partially offload sensing data collected from UAVs to an edge computing platform. The data is used to update its digital twins (DTs) to ensure the promptness of Metaverse services and satisfy the latency requirements of Metaverse users. However, designing such a system is challenging due to the dynamics of sensing data, the latency requirements of Metaverse users, channel conditions, and the available computing resources at both the VSP and EC. Therefore, we formulate the VSP's offloading problem as a stochastic problem and utilize deep reinforcement learning (DRL) algorithms. Simulation results are provided to validate the effectiveness of the learning algorithms.
引用
收藏
页码:1749 / 1753
页数:5
相关论文
共 12 条
  • [1] Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation
    Amini, Alexander
    Gilitschenski, Igor
    Phillips, Jacob
    Moseyko, Julia
    Banerjee, Rohan
    Karaman, Sertac
    Rus, Daniela
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 1143 - 1150
  • [2] Data Offloading in UAV-Assisted Multi-Access Edge Computing Systems Under Resource Uncertainty
    Apostolopoulos, Pavlos Athanasios
    Fragkos, Georgios
    Tsiropoulou, Eirini Eleni
    Papavassiliou, Symeon
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (01) : 175 - 190
  • [3] Compute- and Data-Intensive Networks: The Key to the Metaverse
    Cai, Yang
    Llorca, Jaime
    Tulino, Antonia M.
    Molisch, Andreas F.
    [J]. 2022 1ST INTERNATIONAL CONFERENCE ON 6G NETWORKING (6GNET), 2022,
  • [4] An Adaptive Wireless Virtual Reality Framework in Future Wireless Networks: A Distributed Learning Approach
    Guo, Fengxian
    Yu, F. Richard
    Zhang, Heli
    Ji, Hong
    Leung, Victor C. M.
    Li, Xi
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) : 8514 - 8528
  • [5] Reliable Distributed Computing for Metaverse: A Hierarchical Game-Theoretic Approach
    Jiang, Yuna
    Kang, Jiawen
    Niyato, Dusit
    Ge, Xiaohu
    Xiong, Zehui
    Miao, Chunyan
    Shen, Xuemin
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 1084 - 1100
  • [6] Luong N. C., 2022, arXiv
  • [7] Multi-Tier CloudVR: Leveraging Edge Computing in Remote Rendered Virtual Reality
    Mehrabi, Abbas
    Siekkinen, Matti
    Kamarainen, Teemu
    Yla-Jaaski, Antti
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (02)
  • [8] Adaptive Task Offloading in Coded Edge Computing: A Deep Reinforcement Learning Approach
    Nguyen Van Tam
    Nguyen Quang Hieu
    Nguyen Thi Thanh Van
    Nguyen Cong Luong
    Niyato, Dusit
    Kim, Dong In
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3878 - 3882
  • [9] Optimizing Communication and Computation for Multi-UAV Information Gathering Applications
    Thammawichai, Mason
    Baliyarasimhuni, Sujit P.
    Kerrigan, Eric C.
    Sousa, Joao B.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (02) : 601 - 615
  • [10] Digital Twins From a Networking Perspective
    Vaezi, Mehrad
    Noroozi, Kiana
    Todd, Terence D.
    Zhao, Dongmei
    Karakostas, George
    Wu, Huaqing
    Shen, Xuemin
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (23): : 23525 - 23544