Finite-Interval Stability Analysis of Impulsive Fractional-Delay Dynamical System

被引:1
作者
Kaliraj, K. [1 ]
Priya, P. K. Lakshmi [1 ]
Nieto, Juan J. [2 ]
机构
[1] Univ Madras, Ramanujan Inst Adv Study Math, Chennai 600005, India
[2] Univ Santiago Compostela, Dept Estat Anal Matemat & Optimizac, CITMAga, Santiago De Compostela 15782, Spain
关键词
fractional delay system; Gronwall's inequality; finite-time stability; delayed Mittag-Leffler function; TIME STABILITY;
D O I
10.3390/fractalfract7060447
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stability analysis over a finite time interval is a well-formulated technique to study the dynamical behaviour of a system. This article provides a novel analysis on the finite-time stability of a fractional-order system using the approach of the delayed-type matrix Mittag-Leffler function. At first, we discuss the solution's existence and uniqueness for our considered fractional model. Then standard form of integral inequality of Gronwall's type is used along with the application of the delayed Mittag-Leffler argument to derive the sufficient bounds for the stability of the dynamical system. The analysis of the system is extended and studied with impulsive perturbations. Further, we illustrate the numerical simulations of our analytical study using relevant examples.
引用
收藏
页数:17
相关论文
共 42 条
  • [1] Abbas S., 2023, FRACTIONAL DIFFERENT
  • [2] Caputo-Fabrizio fractional differential equations with non instantaneous impulses
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 131 - 144
  • [3] On the Existence and Stability of a Neutral Stochastic Fractional Differential System
    Ahmad, Manzoor
    Zada, Akbar
    Ghaderi, Mehran
    George, Reny
    Rezapour, Shahram
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [4] Existence and uniqueness results for a class of fractional stochastic neutral differential equations
    Ahmadova, Arzu
    Mahmudov, Nazim, I
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 139 (139)
  • [5] A variation of constant formula for Caputo fractional stochastic differential equations
    Anh, P. T.
    Doan, T. S.
    Huong, P. T.
    [J]. STATISTICS & PROBABILITY LETTERS, 2019, 145 : 351 - 358
  • [6] Concept and solution of digital twin based on a Stieltjes differential equation
    Area, Ivan
    Fernandez, Francisco J.
    Nieto, Juan J.
    Tojo, F. Adrian F.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7451 - 7465
  • [7] Finite Time Stability of Fractional Order Systems of Neutral Type
    Ben Makhlouf, Abdellatif
    Baleanu, Dumitru
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [8] Finite-time stability of continuous autonomous systems
    Bhat, SP
    Bernstein, DS
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) : 751 - 766
  • [9] New criterion for finite-time stability of fractional delay systems
    Du, Feifei
    Lu, Jun-Guo
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 104
  • [10] Exact Solutions and Finite Time Stability of Linear Conformable Fractional Systems with Pure Delay
    Elshenhab, Ahmed M.
    Wang, Xingtao
    Mofarreh, Fatemah
    Bazighifan, Omar
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (02): : 927 - 940