A conductive catecholate-based framework coordinated with unsaturated bismuth boosts CO2 electroreduction to formate

被引:23
作者
Gao, Zengqiang [1 ]
Hou, Man [1 ]
Shi, Yongxia [1 ]
Li, Li [1 ]
Sun, Qisheng [1 ]
Yang, Shuyuan [1 ]
Jiang, Zhiqiang [5 ]
Yang, Wenjuan [2 ]
Zhang, Zhicheng [1 ]
Hu, Wenping [1 ,3 ,4 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Chem, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
[2] Shenzhen Technol Univ, Julong Coll, Shenzhen 518118, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[5] Panzhihua Univ, Vanadium & Titanium Resource Comprehens Utilizat K, Panzhihua 617000, Sichuan, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
METAL-ORGANIC FRAMEWORK; CARBON-DIOXIDE; SINGLE-ATOM; REDUCTION; CONVERSION; DEFECT; PATHWAY;
D O I
10.1039/d3sc01876h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bismuth-based metal-organic frameworks (Bi-MOFs) have received attention in electrochemical CO2-to-formate conversion. However, the low conductivity and saturated coordination of Bi-MOFs usually lead to poor performance, which severely limits their widespread application. Herein, a conductive catecholate-based framework with Bi-enriched sites (HHTP, 2,3,6,7,10,11-hexahydroxytriphenylene) is constructed and the zigzagging corrugated topology of Bi-HHTP is first unraveled via single-crystal X-ray diffraction. Bi-HHTP possesses excellent electrical conductivity (1.65 S m(-1)) and unsaturated coordination Bi sites are confirmed by electron paramagnetic resonance spectroscopy. Bi-HHTP exhibited an outstanding performance for selective formate production of 95% with a maximum turnover frequency of 576 h(-1) in a flow cell, which surpassed most of the previously reported Bi-MOFs. Significantly, the structure of Bi-HHTP could be well maintained after catalysis. In situ attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirms that the key intermediate is *COOH species. Density functional theory (DFT) calculations reveal that the rate-determining step is *COOH species generation, which is consistent with the in situ ATR-FTIR results. DFT calculations confirmed that the unsaturated coordination Bi sites acted as active sites for electrochemical CO2-to-formate conversion. This work provides new insights into the rational design of conductive, stable, and active Bi-MOFs to improve their performance towards electrochemical CO2 reduction.
引用
收藏
页码:6860 / 6866
页数:8
相关论文
共 50 条
[41]   Continuous Electroreduction of CO2 to Formate Using Sn Gas Diffusion Electrodes [J].
Del Castillo, Andres ;
Alvarez-Guerra, Manuel ;
Irabien, Angel .
AICHE JOURNAL, 2014, 60 (10) :3557-3564
[42]   GDE Stability in CO2 Electroreduction to Formate: The Role of Ionomer Type and Loading [J].
Abarca, Jose Antonio ;
Warmuth, Lucas ;
Rieder, Alain ;
Dutta, Abhijit ;
Vesztergom, Soma ;
Broekmann, Peter ;
Irabien, Angel ;
Diaz-Sainz, Guillermo .
ACS CATALYSIS, 2025, 15 (11) :8753-8767
[43]   Graphdiyne enables Cu nanoparticles for highly selective electroreduction of CO2 to formate [J].
Wang, Jing-Jing ;
Wang, Hong-Juan ;
Zhang, Chao ;
Gong, Yun-Nan ;
Bai, Ya-Li ;
Lu, Tong-Bu .
2D MATERIALS, 2021, 8 (04)
[44]   Electrocatalytic Stability of Tin Cathode for Electroreduction of CO2 to Formate in Aqueous Solution [J].
Kim, Young Eun ;
Yun, Hae Sung ;
Jeong, Soon Kwan ;
Yoon, Yeo Il ;
Nam, Sung Chan ;
Park, Ki Tae .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (02) :1266-1269
[45]   Cuprous Sulfide Nanoarrays for Selective Electroreduction of CO2 to Formate at Low Overpotentials [J].
Cai, Siting ;
Wang, Mengdi ;
Chen, Bin ;
Xu, Xin ;
Mi, Linhua ;
Li, Borong ;
Yang, Chengkai ;
Li, Liuyi ;
Zhong, Shenghong ;
Yu, Yan .
CHEMICAL ENGINEERING JOURNAL ADVANCES, 2022, 12
[46]   High-performance electroreduction CO2 to formate at Bi/Nafion interface [J].
Chang, Sheng ;
Xuan, Yimin ;
Duan, Jingjing ;
Zhang, Kai .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 306
[47]   Regulating the Electron Localization of Metallic Bismuth for Boosting CO2 Electroreduction [J].
Wu, Dan ;
Feng, Renfei ;
Xu, Chenyu ;
Sui, Peng-Fei ;
Zhang, Jiujun ;
Fu, Xian-Zhu ;
Luo, Jing-Li .
NANO-MICRO LETTERS, 2022, 14 (01)
[48]   Promotion of CO2 Electroreduction on Bismuth Nanosheets with Cerium Oxide nanoparticles [J].
Guan, Yue ;
Wu, Si-Qian ;
Huang, Hui-Zi ;
Zhu, Zhejiaji ;
Tian, Wenjing ;
Yin, An-Xiang .
CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (17)
[49]   Incorporating SnSx species for electroreduction of CO2 towards formate [J].
Yang, Yibing ;
Yang, Xiao ;
Zhao, Shuwen ;
Liu, Zhipeng ;
Xiao, Yi ;
Han, Lili .
APPLIED SURFACE SCIENCE, 2025, 689
[50]   Electroreduction of CO2 to formate on amine modified Pb electrodes [J].
Zouaoui, Nidhal ;
Ossonon, Benjamin D. ;
Fan, Mengyang ;
Mayilukila, Dilungane ;
Garbarino, Sebastien ;
de Silveira, Glynis ;
Botton, Gianluigi A. ;
Guay, Daniel ;
Tavares, Ana C. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) :11272-11281