A conductive catecholate-based framework coordinated with unsaturated bismuth boosts CO2 electroreduction to formate

被引:22
作者
Gao, Zengqiang [1 ]
Hou, Man [1 ]
Shi, Yongxia [1 ]
Li, Li [1 ]
Sun, Qisheng [1 ]
Yang, Shuyuan [1 ]
Jiang, Zhiqiang [5 ]
Yang, Wenjuan [2 ]
Zhang, Zhicheng [1 ]
Hu, Wenping [1 ,3 ,4 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Chem, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
[2] Shenzhen Technol Univ, Julong Coll, Shenzhen 518118, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[5] Panzhihua Univ, Vanadium & Titanium Resource Comprehens Utilizat K, Panzhihua 617000, Sichuan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORK; CARBON-DIOXIDE; SINGLE-ATOM; REDUCTION; CONVERSION; DEFECT; PATHWAY;
D O I
10.1039/d3sc01876h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bismuth-based metal-organic frameworks (Bi-MOFs) have received attention in electrochemical CO2-to-formate conversion. However, the low conductivity and saturated coordination of Bi-MOFs usually lead to poor performance, which severely limits their widespread application. Herein, a conductive catecholate-based framework with Bi-enriched sites (HHTP, 2,3,6,7,10,11-hexahydroxytriphenylene) is constructed and the zigzagging corrugated topology of Bi-HHTP is first unraveled via single-crystal X-ray diffraction. Bi-HHTP possesses excellent electrical conductivity (1.65 S m(-1)) and unsaturated coordination Bi sites are confirmed by electron paramagnetic resonance spectroscopy. Bi-HHTP exhibited an outstanding performance for selective formate production of 95% with a maximum turnover frequency of 576 h(-1) in a flow cell, which surpassed most of the previously reported Bi-MOFs. Significantly, the structure of Bi-HHTP could be well maintained after catalysis. In situ attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirms that the key intermediate is *COOH species. Density functional theory (DFT) calculations reveal that the rate-determining step is *COOH species generation, which is consistent with the in situ ATR-FTIR results. DFT calculations confirmed that the unsaturated coordination Bi sites acted as active sites for electrochemical CO2-to-formate conversion. This work provides new insights into the rational design of conductive, stable, and active Bi-MOFs to improve their performance towards electrochemical CO2 reduction.
引用
收藏
页码:6860 / 6866
页数:8
相关论文
共 50 条
[21]   Self-Accelerating Effect in a Covalent-Organic Framework with Imidazole Groups Boosts Electroreduction of CO2 to CO [J].
Zhang, Meng-Di ;
Huang, Jia-Run ;
Shi, Wen ;
Liao, Pei-Qin ;
Chen, Xiao-Ming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (42)
[22]   Elucidation of the Synergistic Effect of Dopants and Vacancies on Promoted Selectivity for CO2 Electroreduction to Formate [J].
Li, Zhongjian ;
Cao, Ang ;
Zheng, Qiang ;
Fu, Yuanyuan ;
Wang, Tingting ;
Arul, K. Thanigal ;
Chen, Jeng-Lung ;
Yang, Bin ;
Adli, Nadia Mohd ;
Lei, Lecheng ;
Dong, Chung-Li ;
Xiao, Jianping ;
Wu, Gang ;
Hou, Yang .
ADVANCED MATERIALS, 2021, 33 (02)
[23]   Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction [J].
Zu, Meng Yang ;
Zhang, Le ;
Wang, Chongwu ;
Zheng, Li Rong ;
Yang, Hua Gui .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (35) :16804-16809
[24]   Electroreduction of CO2 on bismuth nanoparticles in seawater [J].
Mason, Aaron ;
MacDonald, Kyla ;
Murphy, William ;
Bennett, Craig ;
Bertin, Erwan .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (02) :217-226
[25]   Chlorine in NiO promotes electroreduction of CO2 to formate [J].
Rodriguez-Olguin, M. A. ;
Flox, C. ;
Ponce-Perez, R. ;
Lipin, R. ;
Ruiz-Zepeda, F. ;
Winczewski, J. P. ;
Kallio, T. ;
Vandichel, M. ;
Guerrero-Sanchez, J. ;
Gardeniers, J. G. E. ;
Takeuchi, N. ;
Susarrey-Arce, A. .
APPLIED MATERIALS TODAY, 2022, 28
[26]   Design of electrocatalysts and electrodes for CO2 electroreduction to formic acid and formate [J].
Tran, Dinh Son ;
Vu, Nhu-Nang ;
Nemamcha, Houssam-Eddine ;
Boisvert, Cedrik ;
Legrand, Ulrich ;
Fink, Arthur G. ;
Navarro-Pardo, Fabiola ;
Dinh, Cao-Thang ;
Nguyen-Tri, Phuong .
COORDINATION CHEMISTRY REVIEWS, 2025, 524
[27]   Metal-Organic Framework-Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO2 Electroreduction to Formate [J].
Deng, Peilin ;
Yang, Fan ;
Wang, Zhitong ;
Chen, Shenghua ;
Zhou, Yinzheng ;
Zaman, Shahid ;
Xia, Bao Yu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) :10807-10813
[28]   Superhydrophobic and Conductive Wire Membrane for Enhanced CO2 Electroreduction to Multicarbon Products [J].
Li, Yunxiang ;
Pei, Zhihao ;
Luan, Deyan ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (19)
[29]   Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate [J].
Du Yuncheng ;
Zheng Xuchen ;
Xue Yurui ;
Li Yuliang .
CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (06) :1380-1386
[30]   In situ transformation of bismuth metal-organic frameworks for efficient selective electroreduction of CO2 to formate [J].
Yuan, Wei-Wen ;
Wu, Jian-Xiang ;
Zhang, Xiang-Da ;
Hou, Shu-Zhen ;
Xu, Ming ;
Gu, Zhi-Yuan .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (46) :24486-24492