An Efficient Framework to Detect Intracranial Hemorrhage Using Hybrid Deep Neural Networks

被引:14
作者
Rajagopal, Manikandan [1 ]
Buradagunta, Suvarna [2 ]
Almeshari, Meshari [3 ]
Alzamil, Yasser [3 ]
Ramalingam, Rajakumar [1 ]
Ravi, Vinayakumar [4 ]
机构
[1] Madanapalle Inst Technol & Sci, Dept CST, Madanapalle 517325, India
[2] Vignans Fdn Sci Technol & Res Vadlamudi, Dept CSE, Guntur 522213, India
[3] Univ Hail, Coll Appl Med Sci, Dept Diagnost Radiol, Hail 55476, Saudi Arabia
[4] Prince Mohammad Bin Fahd Univ, Ctr Artificial Intelligence, Khobar 34754, Saudi Arabia
关键词
intracranial hemorrhage detection; deep neural networks; deep RNN; CNN; CT; CLASSIFICATION; TOMOGRAPHY; ALGORITHM;
D O I
10.3390/brainsci13030400
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Intracranial hemorrhage (ICH) is a serious medical condition that necessitates a prompt and exhaustive medical diagnosis. This paper presents a multi-label ICH classification issue with six different types of hemorrhages, namely epidural (EPD), intraparenchymal (ITP), intraventricular (ITV), subarachnoid (SBC), subdural (SBD), and Some. A patient may experience numerous hemorrhages at the same time in some situations. A CT scan of a patient's skull is used to detect and classify the type of ICH hemorrhage(s) present. First, our model determines whether there is a hemorrhage or not; if there is a hemorrhage, the model attempts to identify the type of hemorrhage(s). In this paper, we present a hybrid deep learning approach that combines convolutional neural network (CNN) and Long-Short Term Memory (LSTM) approaches (Conv-LSTM). In addition, to propose viable solutions for the problem, we used a Systematic Windowing technique with a Conv-LSTM. To ensure the efficacy of the proposed model, experiments are conducted on the RSNA dataset. The suggested model provides higher sensitivity (93.87%), specificity (96.45%), precision (95.21%), and accuracy (95.14%). In addition, the obtained F1 score results outperform existing deep neural network-based algorithms.
引用
收藏
页数:17
相关论文
共 38 条
[21]   An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets [J].
Lee, Hyunkwang ;
Yune, Sehyo ;
Mansouri, Mohammad ;
Kim, Myeongchan ;
Tajmir, Shahein H. ;
Guerrieri, Claude E. ;
Ebert, Sarah A. ;
Pomerantz, Stuart R. ;
Romero, Javier M. ;
Kamalian, Shahmir ;
Gonzalez, Ramon G. ;
Lev, Michael H. ;
Do, Synho .
NATURE BIOMEDICAL ENGINEERING, 2019, 3 (03) :173-+
[22]   Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans [J].
Li, Yong-Hong ;
Zhang, Liang ;
Hu, Qing-Mao ;
Li, Hong-Wei ;
Jia, Fu-Cang ;
Wu, Jian-Huang .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2012, 7 (04) :507-516
[23]   Automatic Detection of the Existence of Subarachnoid Hemorrhage from Clinical CT Images [J].
Li, Yonghong ;
Wu, Jianhuang ;
Li, Hongwei ;
Li, Degang ;
Du, Xiaohua ;
Chen, Zhijun ;
Jia, Fucang ;
Hu, Qingmao .
JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (03) :1259-1270
[24]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[25]  
Majumdar A, 2018, IEEE ENG MED BIO, P583, DOI 10.1109/EMBC.2018.8512336
[26]   Pydicom: An Open Source DICOM Library [J].
Mason, D. .
MEDICAL PHYSICS, 2011, 38 (06)
[27]  
McCulloch WS, 2016, EMBODIMENTS OF MIND, P19
[28]   Multi-Method Diagnosis of CT Images for Rapid Detection of Intracranial Hemorrhages Based on Deep and Hybrid Learning [J].
Mohammed, Badiea Abdulkarem ;
Senan, Ebrahim Mohammed ;
Al-Mekhlafi, Zeyad Ghaleb ;
Rassem, Taha H. ;
Makbol, Nasrin M. ;
Alanazi, Adwan Alownie ;
Almurayziq, Tariq S. ;
Ghaleb, Fuad A. ;
Sallam, Amer A. .
ELECTRONICS, 2022, 11 (15)
[29]   Computer-assisted delineation of hematoma from CT volume using autoencoder and Chan Vese model [J].
Nag, Manas Kumar ;
Chatterjee, Saunak ;
Sadhu, Anup Kumar ;
Chatterjee, Jyotirmoy ;
Ghosh, Nirmalya .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (02) :259-269
[30]   Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging [J].
Prevedello, Luciano M. ;
Erdal, Barbaros S. ;
Ryu, John L. ;
Little, Kevin J. ;
Demirer, Mutlu ;
Qian, Songyue ;
White, Richard D. .
RADIOLOGY, 2017, 285 (03) :923-931