An Efficient Framework to Detect Intracranial Hemorrhage Using Hybrid Deep Neural Networks

被引:14
作者
Rajagopal, Manikandan [1 ]
Buradagunta, Suvarna [2 ]
Almeshari, Meshari [3 ]
Alzamil, Yasser [3 ]
Ramalingam, Rajakumar [1 ]
Ravi, Vinayakumar [4 ]
机构
[1] Madanapalle Inst Technol & Sci, Dept CST, Madanapalle 517325, India
[2] Vignans Fdn Sci Technol & Res Vadlamudi, Dept CSE, Guntur 522213, India
[3] Univ Hail, Coll Appl Med Sci, Dept Diagnost Radiol, Hail 55476, Saudi Arabia
[4] Prince Mohammad Bin Fahd Univ, Ctr Artificial Intelligence, Khobar 34754, Saudi Arabia
关键词
intracranial hemorrhage detection; deep neural networks; deep RNN; CNN; CT; CLASSIFICATION; TOMOGRAPHY; ALGORITHM;
D O I
10.3390/brainsci13030400
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Intracranial hemorrhage (ICH) is a serious medical condition that necessitates a prompt and exhaustive medical diagnosis. This paper presents a multi-label ICH classification issue with six different types of hemorrhages, namely epidural (EPD), intraparenchymal (ITP), intraventricular (ITV), subarachnoid (SBC), subdural (SBD), and Some. A patient may experience numerous hemorrhages at the same time in some situations. A CT scan of a patient's skull is used to detect and classify the type of ICH hemorrhage(s) present. First, our model determines whether there is a hemorrhage or not; if there is a hemorrhage, the model attempts to identify the type of hemorrhage(s). In this paper, we present a hybrid deep learning approach that combines convolutional neural network (CNN) and Long-Short Term Memory (LSTM) approaches (Conv-LSTM). In addition, to propose viable solutions for the problem, we used a Systematic Windowing technique with a Conv-LSTM. To ensure the efficacy of the proposed model, experiments are conducted on the RSNA dataset. The suggested model provides higher sensitivity (93.87%), specificity (96.45%), precision (95.21%), and accuracy (95.14%). In addition, the obtained F1 score results outperform existing deep neural network-based algorithms.
引用
收藏
页数:17
相关论文
共 38 条
[1]   A joint convolutional-recurrent neural network with an attention mechanism for detecting intracranial hemorrhage on noncontrast head CT [J].
Alis, Deniz ;
Alis, Ceren ;
Yergin, Mert ;
Topel, Cagdas ;
Asmakutlu, Ozan ;
Bagcilar, Omer ;
Senli, Yeseren Deniz ;
Ustundag, Ahmet ;
Salt, Vefa ;
Dogan, Sebahat Nacar ;
Velioglu, Murat ;
Selcuk, Hakan Hatem ;
Kara, Batuhan ;
Ozer, Caner ;
Oksuz, Ilkay ;
Kizilkilic, Osman ;
Karaarslan, Ercan .
SCIENTIFIC REPORTS, 2022, 12 (01)
[2]  
Anouk Stein M.D., 2019, Rsna intracranial hemorrhage detection
[3]   Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration [J].
Arbabshirani, Mohammad R. ;
Fornwalt, Brandon K. ;
Mongelluzzo, Gino J. ;
Suever, Jonathan D. ;
Geise, Brandon D. ;
Patel, Aalpen A. ;
Moore, Gregory J. .
NPJ DIGITAL MEDICINE, 2018, 1
[4]   Accurate and Efficient Intracranial Hemorrhage Detection and Subtype Classification in 3D CT Scans with Convolutional and Long Short-Term Memory Neural Networks [J].
Burduja, Mihail ;
Ionescu, Radu Tudor ;
Verga, Nicolae .
SENSORS, 2020, 20 (19) :1-21
[5]  
Castro J.S., 2019, CRONE, V2564, P37
[6]   Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain [J].
Chan, Tao .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (4-5) :285-298
[7]   Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT [J].
Chang, P. D. ;
Kuoy, E. ;
Grinband, J. ;
Weinberg, B. D. ;
Thompson, M. ;
Homo, R. ;
Chen, J. ;
Abcede, H. ;
Shafie, M. ;
Sugrue, L. ;
Filippi, C. G. ;
Su, M. -Y. ;
Yu, W. ;
Hess, C. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (09) :1609-1616
[8]  
Cortes C., 2012, arXiv
[9]   Imaging assessment of traumatic brain injury [J].
Currie, Stuart ;
Saleem, Nayyar ;
Straiton, John A. ;
Macmullen-Price, Jeremy ;
Warren, Daniel J. ;
Craven, Ian J. .
POSTGRADUATE MEDICAL JOURNAL, 2016, 92 (1083) :41-50
[10]   Classification of Intracranial Hemorrhage Subtypes Using Deep Learning on CT Scans [J].
Danilov, Gleb ;
Kotik, Konstantin ;
Negreeva, Anna ;
Tsukanova, Tatiana ;
Shifrin, Michael ;
Zakharova, Natalya ;
Batalov, Artem ;
Pronin, Igor ;
Potapov, Alexander .
IMPORTANCE OF HEALTH INFORMATICS IN PUBLIC HEALTH DURING A PANDEMIC, 2020, 272 :370-373