Application and development of liquid argon detector in rare event detection*

被引:2
作者
Zheng, Hao-Zhe [1 ,2 ]
Liu, Yuan-Yuan [1 ,2 ]
Wang, Li [3 ]
Cheng, Jian-Ping [1 ,2 ]
机构
[1] Beijing Normal Univ, Joint Lab Jinping Ultralow Radiat Background Measu, Key Lab Beam Technol, Minist Educ, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
rare event detection; scintillation detector; time projection chamber; veto measure; TIME-DEPENDENCE; LUMINESCENCE; TRACKS; XENON; DECAY;
D O I
10.7498/aps.72.20222055
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rare event detection is a frontier subject in particle physics and nuclear physics. In particular, dark matter detection, neutrino-free double beta decay and neutrino-nucleon coherent elastic scattering are being planned and implemented gradually. Rare event detection requires not only the detectors to possess excellent performances but also extremely low environmental background, so the selection of detectors and related materials is an important issue in rare event detection. Liquid argon has become an important scintillator material for scintillator detectors because of its low cost, good scintillation performance and large volume. Liquid argon was first studied in the 1940s as a sensitive material for ionizing radiation detectors. The first measurements of high-energy beta particles were obtained by using a liquid argon ionization chamber in 1953. The ICARUS group put forward the idea of constructing liquid argon temporal projection chamber, and made attempt to construct liquid argon temporal projection chamber in 1977. The scintillation light signals were collected for the first time in a liquid argon temporal projection chamber in 1999. Thus, the drift time of the particle can be obtained to determine the particle track. After development, single-phase liquid argon scintillator detector and two-phase argon time projection chamber have become two common types of liquid argon detectors, and have been extensively used in rare event detection experiments in recent years. For dark matter detection, the DEAP group and DarkSide group have achieved good results with single-phase liquid argon scintillation detector and two-phase argon time projection chamber, respectively. For neutrino-free double beta decay experiments, the GERDA group has done a lot of researches of liquid argon anti-coincidence system and applied the said system to experiments. The LEGEND group, which is the combination of GERDA and MAJORANA experimental group, upgraded the liquid argon anti-coincidence system which was applied to the following LEGEND-200 project. For neutrino-nucleon elastic scattering experiments, COHERENT obtained the latest results by using the liquid argon detectors. The Taishan neutrino-nucleon coherent elastic scattering project of the High Energy Institute of Chinese Academy of Sciences has also begun to study the feasibility of liquid argon anti-coincidence system. Finally, this paper discusses the direction of optimizing the liquid argon detector, such as exposure, background level and optical readout scheme, and gives a good prospect of liquid argon detector applied to rare event detection in the future.
引用
收藏
页数:15
相关论文
共 61 条
  • [21] A 3-TON LIQUID ARGON TIME PROJECTION CHAMBER
    BENETTI, P
    BETTINI, A
    CALLIGARICH, E
    CASAGRANDE, F
    CASOLI, P
    CAVANNA, F
    CENNINI, P
    CENTRO, S
    CHENG, M
    CITTOLIN, S
    CLINE, D
    DAINESE, B
    DEVECCHI, C
    DOLFINI, R
    FORTSON, L
    GASPARINI, F
    BERZOLARI, AG
    MAURI, F
    MAZZONE, L
    MONTANARI, C
    MURATORI, G
    OTWINOWSKI, S
    PEPATO, A
    PERIALE, L
    MORTARI, GP
    PIAZZOLI, A
    PICCHI, P
    PIETROPAOLO, F
    RAPPOLDI, A
    RASELLI, GL
    ROSSI, P
    RUBBIA, C
    SCANNICCHIO, D
    SUZUKI, S
    VENTURA, S
    WANG, H
    ZHOU, M
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 332 (03) : 395 - 412
  • [22] First physics results from WARP 2.3 litre prototype
    Benetti, P.
    Acciarri, R.
    Belluco, M.
    Calligarich, E.
    Calaprice, F.
    Cambiaghi, M.
    Carbonara, F.
    Cavanna, F.
    Cocco, A. G.
    Di Pompeo, F.
    Ferrari, N.
    Fiorillo, G.
    Galbiati, C.
    Grandi, L.
    Ianni, A.
    Mangano, G.
    Montanari, C.
    Palamara, O.
    Pandola, L.
    Raselli, G. L.
    Rossella, M.
    Rubbia, C.
    Szelc, A. M.
    Vignoli, C.
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2012, 221 : 53 - 56
  • [23] Long term operation with the DarkSide-50 detector
    Canci, N.
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (03):
  • [24] Light detection in DarkSide-20k
    Carnesecchi, F.
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (03):
  • [25] PERFORMANCE OF A 3-TON LIQUID ARGON TIME PROJECTION CHAMBER
    CENNINI, P
    CITTOLIN, S
    REVOL, JP
    RUBBIA, C
    TIAN, WH
    PICCHI, P
    CAVANNA, F
    MORTARI, GP
    VERDECCHIA, M
    CLINE, D
    MURATORI, G
    OTWINOWSKI, S
    WANG, H
    ZHOU, M
    BETTINI, A
    CASAGRANDE, F
    CASOLI, P
    CENTRO, S
    DAINESE, B
    DEVECCHI, C
    PEPATO, A
    PIETROPAOLO, F
    ROSSI, P
    VENTURA, S
    BENETTI, P
    CALLIGARICH, E
    DOLFINI, R
    BERZOLARI, AG
    MAURI, F
    MAZZONE, L
    MONTANARI, C
    PIAZZOLI, A
    RAPPOLDI, A
    RASELLI, GL
    SCANNICCHIO, D
    PERIALE, L
    SUZUKI, S
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1994, 345 (02) : 230 - 243
  • [26] Detection of scintillation light in coincidence with ionizing tracks in a liquid argon time projection chamber
    Cennini, P
    Revol, JP
    Rubbia, C
    Sergiampietri, F
    Bueno, A
    Campanelli, M
    Goudsmit, P
    Rubbia, A
    Periale, L
    Suzuki, S
    Chen, C
    Chen, Y
    He, K
    Huang, X
    Li, Z
    Lu, F
    Ma, J
    Xu, G
    Xu, Z
    Zhang, C
    Zhang, Q
    Zheng, S
    Cavanna, F
    Mazza, D
    Piano Mortari, G
    Petrera, S
    Rossi, C
    Mannocchi, G
    Picchi, P
    Arneodo, F
    De Mitri, I
    Palamara, O
    Cavalli, D
    Ferrari, A
    Sala, P
    di Tigliole, AB
    Cesana, A
    Terrani, M
    Zavattari, C
    Baibussinov, S
    Bettini, A
    Carpanese, C
    Centro, S
    Favaretto, D
    Pascoli, D
    Pepato, A
    Pietropaolo, F
    Ventura, S
    Benetti, P
    Calligarich, E
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 432 (2-3) : 240 - 248
  • [27] The cryogenic electronics for Dark Side-20k SiPM readout
    Consiglio, L.
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (05):
  • [28] Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment
    Cui, Xiangyi
    Abdukerim, Abdusalam
    Chen, Wei
    Chen, Xun
    Chen, Yunhua
    Dong, Binbin
    Fang, Deqing
    Fu, Changbo
    Giboni, Karl
    Giuliani, Franco
    Gu, Linhui
    Gu, Yikun
    Guo, Xuyuan
    Guo, Zhifan
    Han, Ke
    He, Changda
    Huang, Di
    He, Shengming
    Huang, Xingtao
    Huang, Zhou
    Ji, Xiangdong
    Ju, Yonglin
    Li, Shaoli
    Li, Yao
    Lin, Heng
    Liu, Huaxuan
    Liu, Jianglai
    Ma, Yugang
    Mao, Yajun
    Ni, Kaixiang
    Ning, Jinhua
    Ren, Xiangxiang
    Shi, Fang
    Tan, Andi
    Wang, Cheng
    Wang, Hongwei
    Wang, Meng
    Wang, Qiuhong
    Wang, Siguang
    Wang, Xiuli
    Wang, Xuming
    Wu, Qinyu
    Wu, Shiyong
    Xiao, Mengjiao
    Xie, Pengwei
    Yan, Binbin
    Yang, Yong
    Yue, Jianfeng
    Zhang, Dan
    Zhang, Hongguang
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (18)
  • [29] Search for neutrinoless double-beta decay of 76Ge with a natural broad energy germanium detector
    Dai, W. H.
    Ma, H.
    Yue, Q.
    She, Z.
    Kang, K. J.
    Li, Y. J.
    Agartioglu, M.
    An, H. P.
    Chang, J. P.
    Chen, Y. H.
    Cheng, J. P.
    Deng, Z.
    Fang, C. H.
    Geng, X. P.
    Gong, H.
    Guo, Q. J.
    Guo, X. Y.
    He, L.
    He, S. M.
    Hu, J. W.
    Huang, H. X.
    Huang, T. C.
    Jia, H. T.
    Jiang, X.
    Li, H. B.
    Li, J. M.
    Li, J.
    Li, Q. Y.
    Li, R. M. J.
    Li, X. Q.
    Li, Y. L.
    Liang, Y. F.
    Liao, B.
    Lin, F. K.
    Lin, S. T.
    Liu, S. K.
    Liu, Y. D.
    Liu, Y.
    Liu, Y. Y.
    Liu, Z. Z.
    Mao, Y. C.
    Nie, Q. Y.
    Ning, J. H.
    Pan, H.
    Qi, N. C.
    Ren, J.
    Ruan, X. C.
    Saraswat, K.
    Sharma, V
    Singh, M. K.
    [J]. PHYSICAL REVIEW D, 2022, 106 (03)
  • [30] CONDUCTIVITY PULSES IN LIQUID ARGON
    DAVIDSON, N
    LARSH, AE
    [J]. PHYSICAL REVIEW, 1948, 74 (02): : 220 - 220