Ethylenediamine Vapors-Assisted Surface Passivation of Perovskite Films for Efficient Inverted Solar Cells

被引:9
|
作者
Haider, Muhammad Irfan [1 ,2 ]
Hu, Hao [3 ,4 ]
Seewald, Tobias [4 ]
Ahmed, Safeer [1 ]
Sultan, Muhammad [5 ]
Schmidt-Mende, Lukas [4 ]
Fakharuddin, Azhar [4 ]
机构
[1] Quaid i Azam Univ, Dept Chem, Islamabad 45320, Pakistan
[2] Univ Wah, Dept Chem, Wah 47040, Pakistan
[3] Huazhong Univ Sci & Technol, Wuhan 430074, Peoples R China
[4] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[5] Kohsar Univ Murree, Dept Phys, Punjab 47150, Pakistan
关键词
charge carrier lifetime; defects; perovskite films; stability; vapor treatment; work functions; PERFORMANCE; STABILITY; MIGRATION; LAYERS;
D O I
10.1002/solr.202201092
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Defects present at the surface or within the bulk of halide perovskites act as a barrier to charge transfer/transport, induce nonradiative recombination thereby limit open-circuit voltage (V-OC), and accelerate degradation in the perovskite solar cells (PSCs). Passivation of these defects at surfaces, interfaces, and grain boundaries to suppress the charge recombination is therefore imperative to improving photovoltaic performance in the PSCs. Herein, a facile posttreatment of perovskite surface by ethylenediamine (EDA) via mixed solvent vapor annealing method is reported. The results show that only a trace amount of EDA causes significant suppression of nonradiative recombination leading to over 100 mV increased V-OC and approximate to 22% improvement in power conversion efficiency (PCE) of the inverted PSCs. The key reasons for this improvement are an upward shift in the Fermi energy level, reduced lattice strain and Urbach energy, and reduction in nonradiative recombination upon EDA passivation. These lead to a PCE exceeding 20% up from 16% for a nonpassivated film. The unencapsulated EDA-modified PSCs also demonstrate an improved shelf-life and retain 87% of the initial PCE after 850 h.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Surface Passivation Toward Efficient and Stable Perovskite Solar Cells
    Xia, Junmin
    Liang, Chao
    Gu, Hao
    Mei, Shiliang
    Li, Shengwen
    Zhang, Nan
    Chen, Shi
    Cai, Yongqing
    Xing, Guichuan
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (01)
  • [2] The role of TCNQ for surface and interface passivation in inverted perovskite solar cells
    Abicho, Samuel
    Hailegnaw, Bekele
    Mayr, Felix
    Cobet, Munise
    Yumusak, Cigdem
    Sergawi, Asefa
    Yohannes, Teketel
    Kaltenbrunner, Martin
    Scharber, Markus Clark
    Workneh, Getachew Adam
    MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2025, 14 (01)
  • [3] Surface passivation of perovskite thin films by phosphonium halides for efficient and stable solar cells
    He, Qingquan
    Worku, Michael
    Xu, Liangjin
    Zhou, Chenkun
    Lteif, Sandrine
    Schlenoff, Joseph B.
    Ma, Biwu
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) : 2039 - 2046
  • [4] Simultaneous Bulk and Surface Defect Passivation for Efficient Inverted Perovskite Solar Cells
    Tang, Senlin
    Peng, Ying
    Zhu, Zheng
    Zong, Jiawei
    Zhao, Lian
    Yu, Longsheng
    Chen, Runfeng
    Li, Mingguang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (23) : 5116 - 5122
  • [5] Ethyl Thioglycolate Assisted Multifunctional Surface Modulation for Efficient and Stable Inverted Perovskite Solar Cells
    Wang, Yu
    Wang, Feng
    Song, Jiaxing
    Ye, Jingchuan
    Cao, Jieying
    Yin, Xinxing
    Su, Zhen
    Jin, Yingzhi
    Hu, Lin
    Zuilhof, Han
    Li, Zaifang
    Yan, Wensheng
    Gao, Feng
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (38)
  • [6] Multifunctional passivation strategy based on tetraoctylammonium bromide for efficient inverted perovskite solar cells
    Xiong, Jian
    Dai, Zhongjun
    Zhan, Shiping
    Zhang, Xiaowen
    Xue, Xiaogang
    Liu, Weizhi
    Zhang, Zheling
    Huang, Yu
    Dai, Qilin
    Zhang, Jian
    NANO ENERGY, 2021, 84
  • [7] 4-Methoxy phenethylammonium halide salts for surface passivation of perovskite films towards efficient and stable solar cells
    Yang, Zhichun
    Chen, Jinyan
    Li, Mengyu
    Qi, Minru
    Zhang, Guofeng
    Chen, Ruiyun
    Hu, Jianyong
    Liu, Xinghui
    Qin, Chengbing
    Xiao, Liantuan
    Jia, Suotang
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [8] Surface passivation using pyridinium iodide for highly efficient planar perovskite solar cells
    Du, Yitian
    Wu, Jihuai
    Zhang, Xinpeng
    Zhu, Qianjin
    Zhang, Mingjing
    Liu, Xuping
    Zou, Yu
    Wang, Shibo
    Sun, Weihai
    JOURNAL OF ENERGY CHEMISTRY, 2021, 52 : 84 - 91
  • [9] High-Efficiency Inverted Perovskite Solar Cells via In Situ Passivation Directed Crystallization
    Huang, Yanchun
    Yan, Kangrong
    Wang, Xinjiang
    Li, Biao
    Niu, Benfang
    Yan, Minxing
    Shen, Ziqiu
    Zhou, Kun
    Fang, Yanjun
    Yu, Xuegong
    Chen, Hongzheng
    Zhang, Lijun
    Li, Chang-Zhi
    ADVANCED MATERIALS, 2024, 36 (41)
  • [10] Surface Passivation of Perovskite by Hole-Blocking Layer toward Efficient and Stable Inverted Solar Cells
    Wang, Yandong
    Zhao, Rongmei
    Yu, Xin
    Li, Liufei
    Lin, Puan
    Zhang, Shantao
    Gao, Shuang
    Li, Xinyu
    Zhang, Wenfeng
    Zhang, Wen-Hua
    Yang, Shangfeng
    SOLAR RRL, 2024, 8 (11):