Retrieving Grain Boundaries in 2D Materials

被引:11
|
作者
Yu, Maolin [1 ,2 ]
Hu, Zhili [1 ,2 ]
Zhou, Jingzhuo [3 ]
Lu, Yang [3 ]
Guo, Wanlin [1 ,2 ]
Zhang, Zhuhua [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Minist Education, Key Lab Intelligent Nano Mat & Devices, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Inst Frontier Sci, Nanjing 210016, Peoples R China
[3] City Univ Hong Kong, Dept Mech Engn, Kowloon, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
2D materials; electronics; functionalities; grain boundaries; mechanics; PSEUDO HALL-PETCH; ELECTRICAL-TRANSPORT PROPERTIES; HEXAGONAL BORON-NITRIDE; MECHANICAL-PROPERTIES; POLYCRYSTALLINE GRAPHENE; ATOMIC-SCALE; ELECTRONIC TRANSPORT; STRUCTURAL DEFECTS; STRENGTH; MOS2;
D O I
10.1002/smll.202205593
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The coalescence of randomly distributed grains with different crystallographic orientations can result in pervasive grain boundaries (GBs) in 2D materials during their chemical synthesis. GBs not only are the inherent structural imperfection that causes influential impacts on structures and properties of 2D materials, but also have emerged as a platform for exploring unusual physics and functionalities stemming from dramatic changes in local atomic organization and even chemical makeup. Here, recent advances in studying the formation mechanism, atomic structures, and functional properties of GBs in a range of 2D materials are reviewed. By analyzing the growth mechanism and the competition between far-field strain and local chemical energies of dislocation cores, a complete understanding of the rich GB morphologies as well as their dependence on lattice misorientations and chemical compositions is presented. Mechanical, electronic, and chemical properties tied to GBs in different materials are then discussed, towards raising the concept of using GBs as a robust atomic-scale scaffold for realizing tailored functionalities, such as magnetism, luminescence, and catalysis. Finally, the future opportunities in retrieving GBs for making functional devices and the major challenges in the controlled formation of GB structures for designed applications are commented.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Photonics of 2D materials
    Zhang, Han
    Wang, Junzhuan
    Hasan, Tawfique
    Bao, Qiaoliang
    OPTICS COMMUNICATIONS, 2018, 406 : 1 - 2
  • [32] 2D mesoporous materials
    Ai, Yan
    Li, Wei
    Zhao, Dongyuan
    NATIONAL SCIENCE REVIEW, 2022, 9 (05)
  • [33] NEW 2D MATERIALS
    Naguib, Michael
    ADVANCED MATERIALS & PROCESSES, 2022, 180 (04): : 8 - 9
  • [34] Bromination of 2D materials
    Freiberger, Eva Marie
    Steffen, Julien
    Waleska-Wellnhofer, Natalie J.
    Hemauer, Felix
    Schwaab, Valentin
    Goerling, Andreas
    Steinrueck, Hans-Peter
    Papp, Christian
    NANOTECHNOLOGY, 2024, 35 (14)
  • [35] Exploiting 2D materials
    Won, Rachel
    NATURE PHOTONICS, 2025, 19 (04) : 348 - 349
  • [36] Valleytronics in 2D materials
    Schaibley, John R.
    Yu, Hongyi
    Clark, Genevieve
    Rivera, Pasqual
    Ross, Jason S.
    Seyler, Kyle L.
    Yao, Wang
    Xu, Xiaodong
    NATURE REVIEWS MATERIALS, 2016, 1 (11):
  • [37] The ABC of 2D materials
    Alberto F. Morpurgo
    Nature Physics, 2015, 11 (8) : 625 - 626
  • [38] Intercalation of 2D materials
    Hu, Liangbing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [39] Insights into 2D materials
    Zhao, Hui
    Ryu, Sunmin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (28) : 16940 - 16941
  • [40] Valleytronics in 2D materials
    John R. Schaibley
    Hongyi Yu
    Genevieve Clark
    Pasqual Rivera
    Jason S. Ross
    Kyle L. Seyler
    Wang Yao
    Xiaodong Xu
    Nature Reviews Materials, 1