Dysregulated Cell Homeostasis and miRNAs in Human iPSC-Derived Cardiomyocytes from a Propionic Acidemia Patient with Cardiomyopathy

被引:4
|
作者
Alvarez, Mar [1 ]
Ruiz-Sala, Pedro [2 ,3 ,4 ]
Perez, Belen [1 ,2 ,3 ,4 ]
Desviat, Lourdes Ruiz [1 ,2 ,3 ,4 ]
Richard, Eva [1 ,2 ,3 ,4 ]
机构
[1] Univ Autonoma Madrid UAM, Ctr Biol Mol Severo Ochoa, CSIC, Madrid 28049, Spain
[2] Ctr Diagnost Enfermedades Mol CEDEM, Madrid 28049, Spain
[3] ISCIII, Ctr Invest Biomed Red Enfermedades Raras CIBERER, Madrid 28029, Spain
[4] ISCIII, Inst Invest Sanitaria Hosp La Paz IdiPaz, Madrid 28029, Spain
关键词
propionic acidemia; PCCB; iPSC; iPSC-derived cardiomyocytes; microRNAs; CARDIAC-HYPERTROPHY; OXIDATIVE STRESS; MITOCHONDRIAL; MODEL; MICRORNA-208A; CONTRACTILE; PGC-1-ALPHA; EXPRESSION; GENERATION; APOPTOSIS;
D O I
10.3390/ijms24032182
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Propionic acidemia (PA) disorder shows major involvement of the heart, among other alterations. A significant number of PA patients develop cardiac complications, and available evidence suggests that this cardiac dysfunction is driven mainly by the accumulation of toxic metabolites. To contribute to the elucidation of the mechanistic basis underlying this dysfunction, we have successfully generated cardiomyocytes through the differentiation of induced pluripotent stem cells (iPSCs) from a PCCB patient and its isogenic control. In this human cellular model, we aimed to examine microRNAs (miRNAs) profiles and analyze several cellular pathways to determine miRNAs activity patterns associated with PA cardiac phenotypes. We have identified a series of upregulated cardiac-enriched miRNAs and alterations in some of their regulated signaling pathways, including an increase in the expression of cardiac damage markers and cardiac channels, an increase in oxidative stress, a decrease in mitochondrial respiration and autophagy; and lipid accumulation. Our findings indicate that miRNA activity patterns from PA iPSC-derived cardiomyocytes are biologically informative and advance the understanding of the molecular mechanisms of this rare disease, providing a basis for identifying new therapeutic targets for intervention strategies.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Pathogenic implications of dysregulated miRNAs in propionic acidemia related cardiomyopathy
    Fulgencio-Covian, Alejandro
    Alonso-Barroso, Esmeralda
    Guenzel, Adam J.
    Rivera-Barahona, Ana
    Ugarte, Magdalena
    Perez, Belen
    Barry, Michael A.
    Perez-Cerda, Celia
    Richard, Eva
    Desviat, Lourdes R.
    TRANSLATIONAL RESEARCH, 2020, 218 : 43 - 56
  • [2] Assessment of mitophagy in human iPSC-derived cardiomyocytes
    Yang, Mingchong
    Fu, Ji-Dong
    Zou, Jizhong
    Sridharan, Divya
    Zhao, Ming-Tao
    Singh, Harpreet
    Krigman, Judith
    Khan, Mahmood
    Xin, Gang
    Sun, Nuo
    AUTOPHAGY, 2022, 18 (10) : 2481 - 2494
  • [3] Contractility assessment using aligned human iPSC-derived cardiomyocytes
    Satsuka, Ayano
    Ribeiro, Alexandre J. S.
    Kawagishi, Hiroyuki
    Yanagida, Shota
    Hirata, Naoya
    Yoshinaga, Takashi
    Kurokawa, Junko
    Sugiyama, Atsushi
    Strauss, David G.
    Kanda, Yasunari
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2024, 128
  • [4] Cardiomyocytes Derived from Induced Pluripotent Stem Cells as a Disease Model for Propionic Acidemia
    Alonso-Barroso, Esmeralda
    Perez, Belen
    Desviat, Lourdes Ruiz
    Richard, Eva
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (03) : 1 - 14
  • [5] Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes
    Feyen, Dries A. M.
    McKeithan, Wesley L.
    Bruyneel, Arne A. N.
    Spiering, Sean
    Hoermann, Larissa
    Ulmer, Barbel
    Zhang, Hui
    Briganti, Francesca
    Schweizer, Michaela
    Hegyi, Bence
    Liao, Zhandi
    Polonen, Risto-Pekka
    Ginsburg, Kenneth S.
    Lam, Chi Keung
    Serrano, Ricardo
    Wahlquist, Christine
    Kreymerman, Alexander
    Vu, Michelle
    Amatya, Prashila L.
    Behrens, Charlotta S.
    Ranjbarvaziri, Sara
    Maas, Renee G. C.
    Greenhaw, Matthew
    Bernstein, Daniel
    Wu, Joseph C.
    Bers, Donald M.
    Eschenhagen, Thomas
    Metallo, Christian M.
    Mercola, Mark
    CELL REPORTS, 2020, 32 (03):
  • [6] Modeling Cardiotoxicity in Pediatric Oncology Patients Using Patient-Specific iPSC-Derived Cardiomyocytes Reveals Downregulation of Cardioprotective microRNAs
    Reinal, Ignacio
    Ontoria-Oviedo, Imelda
    Selva, Marta
    Casini, Marilu
    Peiro-Molina, Esteban
    Fambuena-Santos, Carlos
    Climent, Andreu M. M.
    Balaguer, Julia
    Canete, Adela
    Mora, Jaume
    Raya, Angel
    Sepulveda, Pilar
    ANTIOXIDANTS, 2023, 12 (07)
  • [7] Mitochondrial Dysfunctions Contribute to Hypertrophic Cardiomyopathy in Patient iPSC-Derived Cardiomyocytes with MT-RNR2 Mutation
    Li, Shishi
    Pan, Huaye
    Tan, Chao
    Sun, Yaping
    Song, Yanrui
    Zhang, Xuan
    Yang, Wei
    Wang, Xuexiang
    Li, Dan
    Dai, Yu
    Ma, Qiang
    Xu, Chenming
    Zhu, Xufen
    Kang, Lijun
    Fu, Yong
    Xu, Xuejun
    Shu, Jing
    Zhou, Naiming
    Han, Feng
    Qin, Dajiang
    Huang, Wendong
    Liu, Zhong
    Yan, Qingfeng
    STEM CELL REPORTS, 2018, 10 (03): : 808 - 821
  • [8] Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes
    Yuan, Qianliang
    Maas, Renee G. C.
    Brouwer, Ellen C. J.
    Pei, Jiayi
    Blok, Christian Snijders
    Popovic, Marko A.
    Paauw, Nanne J.
    Bovenschen, Niels
    Hjortnaes, Jesper
    Harakalova, Magdalena
    Doevendans, Pieter A.
    Sluijter, Joost P. G.
    van der Velden, Jolanda
    Buikema, Jan W.
    JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2022, 9 (02)
  • [9] Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling
    Vuckovic, Sofija
    Dinani, Rafeeh
    Nollet, Edgar E.
    Kuster, Diederik W. D.
    Buikema, Jan Willem
    Houtkooper, Riekelt H.
    Nabben, Miranda
    van der Velden, Jolanda
    Goversen, Birgit
    STEM CELL RESEARCH & THERAPY, 2022, 13 (01)
  • [10] Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen
    Reeser, Rachel S.
    Salazar, Alyssa K.
    Prutton, Kendra M.
    Roede, James R.
    VeDepo, Mitchell C.
    Jacot, Jeffrey G.
    CELLULAR AND MOLECULAR BIOENGINEERING, 2024, 17 (01) : 25 - 34