Nitrogen implanted carbon nanosheets derived from Acorus calamus as an efficient electrode for the supercapacitor application

被引:4
作者
Kumaresan, Natesan [1 ]
Alsalhi, Mohamad S. [2 ]
Karuppasamy, Pichan [1 ]
Kumar, M. Praveen [3 ]
Pandian, Muthu Senthil [1 ]
Arulraj, A. [4 ]
Peera, Shaik Gouse [5 ]
Mangalaraja, R. V. [3 ]
Devanesan, Sandhanasamy [2 ]
Ramasamy, Perumalsamy [1 ]
Murugadoss, G. [6 ]
机构
[1] Sri Sivasubramaniya Nadar Coll Engn, SSN Res Ctr, Dept Phys, Chennai 603110, Tamil Nadu, India
[2] King Saud Univ, Coll Sci, Dept Phys & Astron, POB 2455, Riyadh 11451, Saudi Arabia
[3] Adolfo Ibanez Univ, Fac Engn & Sci, Diagonal Torres 2640, Penalolen, Santiago, Chile
[4] Univ Atacama, Dept Phys, Copiapo, Chile
[5] Keimyung Univ, Dept Environm Sci, 1095 Dalgubeol Daero, Daegu 42601, South Korea
[6] Sathyabama Inst Sci & Technol, Ctr Nanosci & Nanotechnol, Chennai 600119, India
关键词
Acorus Calamus; Hydrothermal; Carbonization; Porous structures; Electrochemical double layer capacitance; Supercapacitor; HIERARCHICAL POROUS CARBON; ACTIVATED CARBON; ENERGY-STORAGE; RICE HUSK; PERFORMANCE; CHALLENGES; LIGNIN; WASTE; OXIDE;
D O I
10.1016/j.mcat.2023.112978
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modern society's biggest challenges are affordable, clean energy production and storage. Thus, recent research aims at the discovery of novel electrode materials for enhanced energy production and storage. Herein, nitrogen-implanted carbon particles were synthesized for the first time from the Acorus Calamus for the symmetric supercapacitor application. The KOH-activated carbon particles at 750 degrees C (C-750) under a nitrogen atmosphere revealed the better structural, textural, morphological, and electrochemical performance. The BET analysis confirmed that the C-750 carbon nanoparticles tremendously enhanced the surface area of about 3551.07 m(2)/g. Further, the pore size and pore volume were obtained from BJH analysis that showed 3.70 nm and 0.51 cc/g, respectively. The high surface area along with the mesoporous nature of the C-750 sample effectively enhanced the specific capacitance to 354.44 Fg(-1) at 1 Ag-1 using a 6 M KOH electrolytic solution. Further, the enhancement of energy and power density of the C-750 was observed at about 47.2 Whkg(-1) and 16,000 Wkg(-1), respectively.
引用
收藏
页数:14
相关论文
共 63 条
[61]   High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework [J].
Zheng, Fangcai ;
Yang, Yang ;
Chen, Qianwang .
NATURE COMMUNICATIONS, 2014, 5
[62]   Effects of Pore Structure on Performance of An Activated-Carbon Supercapacitor Electrode Recycled from Scrap Waste Tires [J].
Zhi, Mingjia ;
Yang, Feng ;
Meng, Fanke ;
Li, Minqi ;
Manivannan, Ayyakkannu ;
Wu, Nianqiang .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (07) :1592-1598
[63]   Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects [J].
Zuo, Wenhua ;
Li, Ruizhi ;
Zhou, Cheng ;
Li, Yuanyuan ;
Xia, Jianlong ;
Liu, Jinping .
ADVANCED SCIENCE, 2017, 4 (07)