Achieving a high energy storage density in Ag(Nb,Ta)O3 antiferroelectric films via nanograin engineering

被引:26
作者
Cheng, Hongbo [1 ,2 ]
Zhai, Xiao [3 ]
Ouyang, Jun [1 ]
Zheng, Limei [3 ]
Luo, Nengneng [4 ,5 ]
Liu, Jinpeng [1 ]
Zhu, Hanfei [1 ]
Wang, Yingying [6 ]
Hao, Lanxia [6 ]
Wang, Kun [7 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Chem & Chem Engn, Inst Adv Energy Mat & Chem, Jinan 250353, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[3] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
[4] Guangxi Univ, Sch Resources Environm & Mat, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China
[5] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[6] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat Min, Jinan 250061, Peoples R China
[7] China Tobacco Shandong Ind Co Ltd, Jinan Cigarette Factory, Jinan 250104, Peoples R China
来源
JOURNAL OF ADVANCED CERAMICS | 2023年 / 12卷 / 01期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
antiferroelectrics (AFE); AgNbO3; Ag(Nb; Ta)O-3; energy storage; film capacitors; nanograin engineering; THIN-FILMS; CERAMICS; PERFORMANCE; NIOBATE; PERSPECTIVES;
D O I
10.26599/JAC.2023.9220678
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to its lead-free composition and a unique double polarization hysteresis loop with a large maximum polarization (P-max) and a small remnant polarization (P-r), AgNbO3-based antiferroelectrics (AFEs) have attracted extensive research interest for electric energy storage applications. However, a low dielectric breakdown field (E-b) limits an energy density and its further development. In this work, a highly efficient method was proposed to fabricate high-energy-density Ag(Nb,Ta)O-3 capacitor films on Si substrates, using a two-step process combining radio frequency (RF)-magnetron sputtering at 450 degrees C and post-deposition rapid thermal annealing (RTA). The RTA process at 700 degrees C led to sufficient crystallization of nanograins in the film, hindering their lateral growth by employing short annealing time of 5 min. The obtained Ag(Nb,Ta)O-3 films showed an average grain size (D) of similar to 14 nm (obtained by Debye-Scherrer formula) and a slender room temperature (RT) polarization-electric field (P- E) loop (Pr approximate to 3.8 mu C center dot cm(-2) and P-max approximate to 38 mu C center dot cm(-2) under an electric field of similar to 3.3 MV center dot cm(-1)), the P-E loop corresponding to a high recoverable energy density (W-rec) of similar to 46.4 J center dot cm(-3) and an energy efficiency (eta) of similar to 80.3%. Additionally, by analyzing temperature-dependent dielectric property of the film, a significant downshift of the diffused phase transition temperature (TM2-M3) was revealed, which indicated the existence of a stable relaxor-like
引用
收藏
页码:196 / 206
页数:11
相关论文
共 50 条
[31]   Chemical solution deposition and infrared study of K(Ta,Nb)O3 thin films [J].
Zelezny, V ;
Bursík, J ;
Vanek, P .
FERROELECTRICS, 2005, 318 :23-28
[32]   Structural, dielectric and energy storage characteristics of (Pb1-xSrx) (Zr0.80Ti0.20)O3 antiferroelectric compositions [J].
Choudhary, A. ;
Priyadarsini, V ;
Nair, Varna V. ;
Pradeep, Athul ;
Jumana, J. ;
Kumar, V .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 899
[33]   Ultrahigh Energy Storage Density and Efficiency Achieved in PbZrO3-Based Antiferroelectric Ceramics via Phase Modulation Engineering [J].
Hu, Peng ;
Yao, Manwen ;
Yang, Tongqing ;
Yao, Xi .
ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (18) :26881-26891
[34]   Achieving ultrahigh energy storage performance of PBLZST-based antiferroelectric composite ceramics via interfacial polarization engineering [J].
Hu, Jun ;
Wang, Wei ;
Yang, Ying ;
Qiu, Shiyong ;
Zhang, Guangzu ;
Xu, Jianping ;
Lu, Shiru ;
Li, Kanghua ;
Jiang, Shenglin .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (13) :7642-7650
[35]   Ultrahigh-Energy Storage Properties of (PbCa)ZrO3 Antiferroelectric Thin Films via Constructing a Pyrochlore Nanocrystalline Structure [J].
Li, Yi Zhuo ;
Lin, Jun Liang ;
Bai, Yu ;
Li, Yanxi ;
Zhang, Zhi Dong ;
Wang, Zhan Jie .
ACS NANO, 2020, 14 (06) :6857-6865
[36]   Enhanced energy storage density in Ca and Ta co-doped AgNbO3antiferroelectric ceramics [J].
Chao, Wenna ;
Yang, Tongqing ;
Li, Yongxiang ;
Liu, Zhifu .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (12) :7283-7290
[37]   Phase engineering in NaNbO3 antiferroelectrics for high energy storage density [J].
Chen, Zhengu ;
Mao, Shuaifei ;
Ma, Li ;
Luo, Gengguang ;
Feng, Qin ;
Cen, Zhenyong ;
Toyohisa, Fujita ;
Peng, Xiuning ;
Liu, Laijun ;
Zhou, Huanfu ;
Hu, Changzheng ;
Luo, Nengneng .
JOURNAL OF MATERIOMICS, 2022, 8 (04) :753-762
[38]   Enhanced energy storage density in Sc3+ substituted Pb(Zr0.53Ti0.47)O3 nanoscale films by pulse laser deposition technique [J].
Bhattarai, Mohan K. ;
Mishra, Karuna K. ;
Instan, Alvaro A. ;
Bastakoti, Bishnu P. ;
Katiyar, Ram S. .
APPLIED SURFACE SCIENCE, 2019, 490 :451-459
[39]   Energy storage and release properties of Sr-doped (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics [J].
Xu, Ran ;
Xu, Zhuo ;
Feng, Yujun ;
Tian, Jingjing ;
Huang, Dong .
CERAMICS INTERNATIONAL, 2016, 42 (11) :12875-12879
[40]   Structural and Electrical Properties of K(Ta,Nb)O3 Thin Films for the Application of Electrocaloric Devices [J].
Min-Su Kwon ;
Sung-Gap Lee ;
Kyeong-Min Kim ;
Young-Gon Kim .
Transactions on Electrical and Electronic Materials, 2019, 20 :558-563