Achieving a high energy storage density in Ag(Nb,Ta)O3 antiferroelectric films via nanograin engineering

被引:26
作者
Cheng, Hongbo [1 ,2 ]
Zhai, Xiao [3 ]
Ouyang, Jun [1 ]
Zheng, Limei [3 ]
Luo, Nengneng [4 ,5 ]
Liu, Jinpeng [1 ]
Zhu, Hanfei [1 ]
Wang, Yingying [6 ]
Hao, Lanxia [6 ]
Wang, Kun [7 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Chem & Chem Engn, Inst Adv Energy Mat & Chem, Jinan 250353, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[3] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
[4] Guangxi Univ, Sch Resources Environm & Mat, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China
[5] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[6] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat Min, Jinan 250061, Peoples R China
[7] China Tobacco Shandong Ind Co Ltd, Jinan Cigarette Factory, Jinan 250104, Peoples R China
来源
JOURNAL OF ADVANCED CERAMICS | 2023年 / 12卷 / 01期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
antiferroelectrics (AFE); AgNbO3; Ag(Nb; Ta)O-3; energy storage; film capacitors; nanograin engineering; THIN-FILMS; CERAMICS; PERFORMANCE; NIOBATE; PERSPECTIVES;
D O I
10.26599/JAC.2023.9220678
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to its lead-free composition and a unique double polarization hysteresis loop with a large maximum polarization (P-max) and a small remnant polarization (P-r), AgNbO3-based antiferroelectrics (AFEs) have attracted extensive research interest for electric energy storage applications. However, a low dielectric breakdown field (E-b) limits an energy density and its further development. In this work, a highly efficient method was proposed to fabricate high-energy-density Ag(Nb,Ta)O-3 capacitor films on Si substrates, using a two-step process combining radio frequency (RF)-magnetron sputtering at 450 degrees C and post-deposition rapid thermal annealing (RTA). The RTA process at 700 degrees C led to sufficient crystallization of nanograins in the film, hindering their lateral growth by employing short annealing time of 5 min. The obtained Ag(Nb,Ta)O-3 films showed an average grain size (D) of similar to 14 nm (obtained by Debye-Scherrer formula) and a slender room temperature (RT) polarization-electric field (P- E) loop (Pr approximate to 3.8 mu C center dot cm(-2) and P-max approximate to 38 mu C center dot cm(-2) under an electric field of similar to 3.3 MV center dot cm(-1)), the P-E loop corresponding to a high recoverable energy density (W-rec) of similar to 46.4 J center dot cm(-3) and an energy efficiency (eta) of similar to 80.3%. Additionally, by analyzing temperature-dependent dielectric property of the film, a significant downshift of the diffused phase transition temperature (TM2-M3) was revealed, which indicated the existence of a stable relaxor-like
引用
收藏
页码:196 / 206
页数:11
相关论文
共 50 条
[21]   Achieving high energy efficiency and energy density in PbHfO3-based antiferroelectric ceramics [J].
Chao, Wenna ;
Yang, Tongqing ;
Li, Yongxiang .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (47) :17016-17024
[22]   Antiferroelectric order and Ta-doped AgNbO3 with higher energy storage density [J].
Li, Gen ;
Liu, Hai ;
Zhao, Lei ;
Gao, Jing ;
Liang, Shiyou ;
Li, Jingfeng ;
Zhu, Jing .
JOURNAL OF APPLIED PHYSICS, 2019, 125 (20)
[23]   High-energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films [J].
Zhang, Tiandong ;
Li, Weili ;
Hou, Yafei ;
Yu, Yang ;
Song, Ruixuan ;
Cao, Wenping ;
Fei, Weidong .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (07) :3080-3087
[24]   Structural and Electrical Properties of K(Ta,Nb)O3 Thin Films for the Application of Electrocaloric Devices [J].
Kwon, Min-Su ;
Lee, Sung-Gap ;
Kim, Kyeong-Min ;
Kim, Young-Gon .
TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2019, 20 (06) :558-563
[25]   Synthesis and characterization of sol-gel derived Ag(Nb,Ta)O3 nanopowder [J].
Cao, Lifeng ;
Li, Lingxia ;
Zhang, Ping ;
Wu, Haitao .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2009, 51 (02) :251-254
[26]   Achieving high energy storage density and efficiency simultaneously in Sr(Nb0.5Al0.5)O3 modified BiFeO3 based lead-free ceramics [J].
Liu, Shuo ;
Feng, Wuwei ;
Li, Jinhong ;
Zhao, Changchun ;
Hu, Cheng ;
He, Bin ;
Bao, Zhidi ;
Luan, Xuezhu .
CHEMICAL ENGINEERING JOURNAL, 2023, 451
[27]   Large strain and high energy storage density in orthorhombic perovskite, (Pb0.97La0.02)(Zr1-x-ySnxTiy)O3 antiferroelectric thin films [J].
Mirshekarloo, Meysam Sharifzadeh ;
Yao, Kui ;
Sritharan, Thirumany .
APPLIED PHYSICS LETTERS, 2010, 97 (14)
[28]   Superior energy storage density and giant negative electrocaloric effects in (Pb0.98La0.02)(Zr, Sn)O3 antiferroelectric ceramics [J].
Zhao, Pengfei ;
Wang, Shibin ;
Tang, Hui ;
Jian, Xiaodong ;
Zhao, Xiaobo ;
Yao, Yingbang ;
Tao, Tao ;
Liang, Bo ;
Lu, Sheng-Guo .
SCRIPTA MATERIALIA, 2021, 200
[29]   Energy storage characteristics of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics with high Sn content [J].
Dan, Yu ;
Xu, Haojie ;
Zou, Kailun ;
Zhang, Qingfeng ;
Lu, Yinmei ;
Chang, Gang ;
Huang, Haitao ;
He, Yunbin .
APPLIED PHYSICS LETTERS, 2018, 113 (06)
[30]   Energy Storage Properties of Nano-grained Antiferroelectric (Pb,La)(Zr,Ti)O3 Films Prepared by Aerosol-deposition Method [J].
Kang, Soo-Bin ;
Choi, Min-Geun ;
Jeong, Dae-Yong ;
Kong, Young-Min ;
Ryu, Jungho .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2015, 22 (03) :1477-1482