Degradation of methylene blue with a novel Fe3O4/Mn3O4/CuO nanomaterial under sonocatalytic conditions

被引:12
作者
Kaya, Mehmet Tahir [1 ]
Calimli, Mehmet Harbi [1 ,2 ]
Nas, Mehmet Salih [1 ,3 ]
机构
[1] Igdir Univ, Res Lab Applicat & Res Ctr ALUM, TR-76000 Igdir, Turkiye
[2] Igdir Univ, Tuzluca Vocat Sch, Dept Med Serv & Tech, TR-76000 Igdir, Turkiye
[3] Igdir Univ, Fac Appl Sci, Dept Organ Agr Management, TR-76000 Igdir, Turkiye
关键词
Ultrasonics; Nanocatalyst; Characterization; Degradation; Methylene blue; FENTON-LIKE REACTION; PHOTOCATALYTIC DEGRADATION; WASTE-WATER; EFFICIENT DEGRADATION; ORGANIC CONTAMINANTS; ULTRASONIC TREATMENT; HYDROGEN-PEROXIDE; GRAPHENE OXIDE; DYE REMOVAL; DECOMPOSITION;
D O I
10.1007/s11164-023-04964-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, Fe3O4/Mn3O4/CuO nanoparticles were synthesized, characterized, and used as a nanocatalyst in methylene blue (MB) degradation under ultrasonic conditions. The synthesis of Fe3O4/Mn3O4/CuO nanoparticles was carried out according to a facile method and characterized using some analytical techniques such as FTIR, scanning electron microscopy (SEM) with transmission electron microscopy (TEM), EDS, and X-ray diffraction (XRD). The obtained Fe3O4/Mn3O4/CuO nanoparticles showed a very homogeneous structure, and the average particle size was determined as 1.87 nm. XRD analyses revealed that Fe3O4/Mn3O4/CuO nanoparticles have a 2.27 nm crystalline particle size. The chemical composition of Fe3O4/Mn3O4/CuO nanoparticles was well detected by FTIR and SEM-EDS analyses. The products formed after the degradation of MB were detected by gas chromatography-mass spectrometry (GC-MS). The degradation of MB was investigated with several experimental conditions using Fe3O4/Mn3O4/CuO nanoparticles, and optimum experiment conditions were detected to be [T] = 301 K, [MB] = 0.03 g/L, [Cat.] = 1.0 g/L, [H2O2] = 5 mM, [Ult.] = 60 kHz. A maximum of 95.04% MB degradation using Fe3O4/Mn3O4/CuO nanoparticles was achieved in 150 min. To detect the radical effectiveness, t-butanol, ethanol, and t-butanol scavenger solvents were tested, and it was detected that these scavenger solvents prevent the formation of radicals that are effective in MB degradation. As a result, the present work paves the way to prepare excellent and highly efficient sonocatalysts for the degradation of organic dyes.
引用
收藏
页码:2549 / 2568
页数:20
相关论文
共 50 条
  • [41] Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite
    Chang, Jiali
    Ma, Jianchao
    Ma, Qingliang
    Zhang, Duoduo
    Qiao, Nannan
    Hu, Mengxiao
    Ma, Hongzhu
    APPLIED CLAY SCIENCE, 2016, 119 : 132 - 140
  • [42] AgFe2O4/MWCNT nanoparticles as novel catalyst combined adsorption-sonocatalytic for the degradation of methylene blue under ultrasonic irradiation
    Nas, Mehmet Salih
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (03):
  • [43] Synthesis of Rectorite/Fe3O4/ZnO Composites and Their Application for the Removal of Methylene Blue Dye
    Wang, Huanhuan
    Zhou, Peijiang
    Guo, Rui
    Wang, Yifei
    Zhan, Hongju
    Yuan, Yunfei
    CATALYSTS, 2018, 8 (03):
  • [44] Preparation, Characterization, and Application of Novel Ternary PPS/PVA/Fe3O4 Nanocomposite for Enhanced Visible Light Photocatalytic Degradation of Methylene Blue
    Mojdeh Atashkadi
    Alireza Mohadesi
    Mohammad Ali Karimi
    Seyed Zia Mohammadi
    Vida Haji Aghaei
    Journal of Cluster Science, 2024, 35 : 497 - 518
  • [45] Preparation, Characterization, and Application of Novel Ternary PPS/PVA/Fe3O4 Nanocomposite for Enhanced Visible Light Photocatalytic Degradation of Methylene Blue
    Atashkadi, Mojdeh
    Mohadesi, Alireza
    Karimi, Mohammad Ali
    Mohammadi, Seyed Zia
    Aghaei, Vida Haji
    JOURNAL OF CLUSTER SCIENCE, 2023, 35 (2) : 497 - 518
  • [46] Novel Fe3O4 Nanoparticle/β-Cyclodextrin-Based Polymer Composites for the Removal of Methylene Blue from Water
    Xie, Ze-Wu
    Lin, Jie-Ci
    Xu, Meng-Ya
    Wang, Hua-Ying
    Wu, Ying-Xuan
    He, Fu-An
    Jiang, Hong-Liu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (26) : 12270 - 12281
  • [47] Yolk-Shell Structured Fe3O4 @ Copper Silicate as Catalyst for Catalytic Degradation of Methylene Blue
    Huang, Kai
    Wang, Huiping
    CHEMISTRYSELECT, 2018, 3 (33): : 9681 - 9689
  • [48] Efficient degradation of methylene blue by magnetically separable Fe3O4/chitosan/TiO2 nanocomposites
    Xiang, Ying
    Wang, Hui
    He, Yu
    Song, Gongwu
    DESALINATION AND WATER TREATMENT, 2015, 55 (04) : 1018 - 1025
  • [49] Removal of methylene blue from water by magnetic Fe0/Fe3O4/graphene composites
    Chong, Shan
    Huang, Ting
    Zhang, Guangming
    Guo, Jianbin
    Li, Xueyan
    DESALINATION AND WATER TREATMENT, 2020, 188 : 239 - 246
  • [50] Biomass activated carbon supported with high crystallinity and dispersion Fe3O4 nanoparticle for preconcentration and effective degradation of methylene blue
    Liu, Xia
    Zhang, Shengxiao
    Luo, Hao
    Zhang, Yuanyuan
    Xu, Qiang
    Zhang, Zongyuan
    Xu, Hui
    Wang, Zhenhua
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 81 : 265 - 274