Review of interpretable machine learning for process industries

被引:49
作者
Carter, A. [1 ]
Imtiaz, S. [1 ]
Naterer, G. F. [2 ]
机构
[1] Mem Univ, St John, NF A1C 5S7, Canada
[2] Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Machine learning; Process industries; Risk management; Model interpretability; PRINCIPAL COMPONENT ANALYSIS; PROCESS FAULT-DETECTION; USEFUL LIFE ESTIMATION; NEURAL-NETWORK MODELS; PARTIAL LEAST-SQUARES; ARTIFICIAL-INTELLIGENCE; OFFSHORE OIL; BLACK-BOX; DIAGNOSIS; PREDICTION;
D O I
10.1016/j.psep.2022.12.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This review article examines recent advances in the use of machine learning for process industries. The article presents common process industry tasks that researchers are solving with machine learning techniques. It then identifies a lack of consensus among past studies when selecting an appropriate model given a prescribed application. Furthermore, the article identifies that relatively few past studies have considered model inter-pretability - a "black-box" challenge holding back machine learning's implementation in more high-risk in-dustrial applications. This interdisciplinary field of engineering and computer science is still reasonably young. Additional research is recommended to standardize methods and establish a strategic framework to manage risk during adoption of machine learning models.
引用
收藏
页码:647 / 659
页数:13
相关论文
共 50 条
[21]   A Future Direction of Machine Learning for Building Energy Management: Interpretable Models [J].
Gugliermetti, Luca ;
Cumo, Fabrizio ;
Agostinelli, Sofia .
ENERGIES, 2024, 17 (03)
[22]   Advances and opportunities in machine learning for process data analytics [J].
Qin, S. Joe ;
Chiang, Leo H. .
COMPUTERS & CHEMICAL ENGINEERING, 2019, 126 :465-473
[23]   A critical moment in machine learning in medicine: on reproducible and interpretable learning [J].
Ciobanu-Caraus, Olga ;
Aicher, Anatol ;
Kernbach, Julius M. ;
Regli, Luca ;
Serra, Carlo ;
Staartjes, Victor E. .
ACTA NEUROCHIRURGICA, 2024, 166 (01)
[24]   Impacts of process parameters on diesel reforming via interpretable machine learning [J].
Liang, Zhenwei ;
Huang, Jiazhun ;
Liu, Yujia ;
Wang, Tiejun .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 :658-665
[25]   Algorithms for Interpretable Machine Learning [J].
Rudin, Cynthia .
PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, :1519-1519
[26]   Interpretable machine learning for genomics [J].
Watson, David S. .
HUMAN GENETICS, 2022, 141 (09) :1499-1513
[27]   Robotic Process Automation and Machine Learning: a Systematic Review [J].
Valerio de Moraes, Carlos Henrique ;
Scolimoski, Josnei ;
Lambert-Torres, Germano ;
Santini, Mariana ;
Alves Dias, Andre Luiz ;
Guerra, Fabio Alessandro ;
Pedretti, Andre ;
Ramos, Milton Pires .
BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2022, 65
[28]   Applications of machine learning in the brewing process: a systematic review [J].
Nettesheim, Philipp ;
Burggräf, Peter ;
Steinberg, Fabian .
Discover Artificial Intelligence, 2024, 4 (01)
[29]   A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing [J].
Liu, Jia ;
Ye, Jiafeng ;
Izquierdo, Daniel Silva ;
Vinel, Aleksandr ;
Shamsaei, Nima ;
Shao, Shuai .
JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (08) :3249-3275
[30]   A review of machine learning in additive manufacturing: design and process [J].
Chen, Kefan ;
Zhang, Peilei ;
Yan, Hua ;
Chen, Guanglong ;
Sun, Tianzhu ;
Lu, Qinghua ;
Chen, Yu ;
Shi, Haichuan .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 135 (3-4) :1051-1087