Choosing shape parameters for regression in reproducing kernel Hilbert space and variable selection

被引:0
|
作者
Tan, Xin [1 ]
Xia, Yingcun [2 ]
Kong, Efang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Peoples R China
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
General Gaussian RBF kernel; kernel ridge regression (KRR); oracle property; reproducing kernel Hilbert space (RKHS); variable selection;
D O I
10.1080/10485252.2023.2164890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Gaussian radial basis function (RBF) is a widely used kernel function in kernel-based methods. The parameter in RBF, referred to as the shape parameter, plays an essential role in model fitting. In this paper, we propose a method to select the shape parameters for the general Gaussian RBF kernel. It can simultaneously serve for variable selection and regression function estimation. For the former, asymptotic consistency is established; for the latter, the estimation is as efficient as if the true or optimal shape parameters are known. Simulations and real examples are used to illustrate the method's performance of prediction by comparing it with other popular methods.
引用
收藏
页码:514 / 528
页数:15
相关论文
共 50 条
  • [21] The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
    Benelmadani, D.
    Benhenni, K.
    Louhichi, S.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (06) : 1479 - 1500
  • [22] The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
    D. Benelmadani
    K. Benhenni
    S. Louhichi
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 1479 - 1500
  • [23] ORACLE INEQUALITIES FOR SPARSE ADDITIVE QUANTILE REGRESSION IN REPRODUCING KERNEL HILBERT SPACE
    Lv, Shaogao
    Lin, Huazhen
    Lian, Heng
    Huang, Jian
    ANNALS OF STATISTICS, 2018, 46 (02): : 781 - 813
  • [24] Wasserstein filter for variable screening in binary classification in the reproducing kernel Hilbert space
    Jeong, Sanghun
    Kim, Choongrak
    Yang, Hojin
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (03) : 623 - 642
  • [25] Boosting Shape Registration Algorithms via Reproducing Kernel Hilbert Space Regularizers
    Parkison, Steven A.
    Ghaffari, Maani
    Gan, Lu
    Zhang, Ray
    Ushani, Arash K.
    Eustice, Ryan M.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 4563 - 4570
  • [26] The Henderson Smoother in Reproducing Kernel Hilbert Space
    Dagum, Estela Bee
    Bianconcini, Silvia
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2008, 26 (04) : 536 - 545
  • [27] Regularization in a functional reproducing kernel Hilbert space
    Wang, Rui
    Xu, Yuesheng
    JOURNAL OF COMPLEXITY, 2021, 66
  • [28] A Brief Digest on Reproducing Kernel Hilbert Space
    Tong, Shou-yu
    Cong, Fu-zhong
    Wang, Zhi-xia
    INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS AND ELECTRONIC ENGINEERING (CMEE 2016), 2016,
  • [29] Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial
    Nosedal-Sanchez, Alvaro
    Storlie, Curtis B.
    Lee, Thomas C. M.
    Christensen, Ronald
    AMERICAN STATISTICIAN, 2012, 66 (01): : 50 - 60
  • [30] Flexible Expectile Regression in Reproducing Kernel Hilbert Spaces
    Yang, Yi
    Zhang, Teng
    Zou, Hui
    TECHNOMETRICS, 2018, 60 (01) : 26 - 35