Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

被引:12
作者
Huang, Yunshi [1 ]
Chouzenoux, Emilie [1 ]
Pesquet, Jean-Christophe [1 ]
机构
[1] Univ Paris Saclay, Ctr Vis Numer, CentraleSupelec, Inria, F-91190 Gif Sur Yvette, France
基金
欧洲研究理事会;
关键词
Variational Bayesian approach; Kullback-Leibler divergence; majorization-minimization; blind deconvolution; image restoration; neural network; unrolling; deep learning; RESTORATION; INFERENCE; SIGNAL;
D O I
10.1109/TIP.2022.3224322
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning.
引用
收藏
页码:430 / 445
页数:16
相关论文
共 64 条
[1]   An alternating proximal approach for blind video deconvolution [J].
Abboud, Feriel ;
Chouzenoux, Emilie ;
Pesquet, Jean-Christophe ;
Chenot, Jean-Hugues ;
Laborelli, Louis .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2019, 70 :21-36
[2]  
Albluwi F, 2018, IEEE INT WORKS MACH
[3]   Variational Bayesian Blind Deconvolution Using a Total Variation Prior [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (01) :12-26
[4]   Method for out-of-focus camera calibration [J].
Bell, Tyler ;
Xu, Jing ;
Zhang, Song .
APPLIED OPTICS, 2016, 55 (09) :2346-2352
[5]   Deep unfolding of a proximal interior point method for image restoration [J].
Bertocchi, C. ;
Chouzenoux, E. ;
Corbineau, M-C ;
Pesquet, J-C ;
Prato, M. .
INVERSE PROBLEMS, 2020, 36 (03)
[6]  
Bietti A, 2019, Arxiv, DOI [arXiv:1810.00363, DOI 10.48550/ARXIV.1810.00363]
[7]   1 BLIND RESTORATION OF BLURRED PHOTOGRAPHS VIA AR MODELLING AND MCMC [J].
Bishop, Tom E. ;
Molina, Rafael ;
Hopgood, James R. .
2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, :669-672
[8]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[9]   ALTERNATING PROXIMAL ALGORITHM FOR BLIND IMAGE RECOVERY [J].
Bolte, J. ;
Combettes, P. L. ;
Pesquet, J. -C. .
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, :1673-1676
[10]   Direct blind deconvolution [J].
Carasso, AS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2001, 61 (06) :1980-2007