Linking Personalized Brain Atrophy to Schizophrenia Network and Treatment Response

被引:10
作者
Ji, Gong-Jun [1 ,2 ,3 ,4 ,5 ]
Zalesky, Andrew [6 ,7 ]
Wang, Yingru [1 ,2 ,3 ,4 ]
He, Kongliang [3 ,4 ,5 ,8 ]
Wang, Lu [1 ,2 ,3 ,4 ]
Du, Rongrong [1 ,2 ,3 ,4 ]
Sun, Jinmei [1 ,2 ,3 ,4 ]
Bai, Tongjian [1 ,2 ,3 ,4 ]
Chen, Xingui [1 ,2 ,3 ,4 ]
Tian, Yanghua [1 ,2 ,3 ,4 ,5 ]
Zhu, Chunyan [1 ,2 ,3 ,4 ,5 ]
Wang, Kai [1 ,2 ,3 ,4 ,5 ]
机构
[1] Anhui Med Univ, Affiliated Hosp 1, Sch Mental Hlth & Psychol Sci, Dept Neurol, Hefei 230032, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230088, Peoples R China
[3] Anhui Prov Key Lab Cognit & Neuropsychiat Disorde, Hefei 230032, Peoples R China
[4] Collaborat Innovat Ctr Neuropsychiat Disorders &, Hefei 230032, Peoples R China
[5] Anhui Inst Translat Med, Hefei 230032, Peoples R China
[6] Univ Melbourne, Melbourne Neuropsychiat Ctr, Dept Psychiat, Melbourne, Vic 3010, Australia
[7] Univ Melbourne, Melbourne Neuropsychiat Ctr, Dept Biomed Engn, Melbourne, Vic 3010, Australia
[8] Anhui Mental Hlth Ctr, Dept Psychiat, Hefei 230022, Peoples R China
基金
澳大利亚国家健康与医学研究理事会; 中国国家自然科学基金;
关键词
schizophrenia; transcranial magnetic stimulation; normative modeling; functional connectivity; magnetic resonance imaging; TRANSCRANIAL MAGNETIC STIMULATION; THETA-BURST STIMULATION; LOCALIZATION; IDENTIFICATION; ABNORMALITIES; HETEROGENEITY; 1ST-EPISODE; SYMPTOMS; PATTERNS; CORTEX;
D O I
10.1093/schbul/sbac162
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Background and Hypothesis Schizophrenia manifests with marked heterogeneity in both clinical presentation and underlying biology. Modeling individual differences within clinical cohorts is critical to translate knowledge reliably into clinical practice. We hypothesized that individualized brain atrophy in patients with schizophrenia may explain the heterogeneous outcomes of repetitive transcranial magnetic stimulation (rTMS). Study Design The magnetic resonance imaging (MRI) data of 797 healthy subjects and 91 schizophrenia patients (between January 1, 2015, and December 31, 2020) were retrospectively selected from our hospital database. The healthy subjects were used to establish normative reference ranges for cortical thickness as a function of age and sex. Then, a schizophrenia patient's personalized atrophy map was computed as vertex-wise deviations from the normative model. Each patient's atrophy network was mapped using resting-state functional connectivity MRI from a subgroup of healthy subjects (n = 652). In total 52 of the 91 schizophrenia patients received rTMS in a randomized clinical trial (RCT). Their longitudinal symptom changes were adopted to test the clinical utility of the personalized atrophy map. Results The personalized atrophy maps were highly heterogeneous across patients, but functionally converged to a putative schizophrenia network that comprised regions implicated by previous group-level findings. More importantly, retrospective analysis of rTMS-RCT data indicated that functional connectivity of the personalized atrophy maps with rTMS targets was significantly associated with the symptom outcomes of schizophrenia patients. Conclusions Normative modeling can aid in mapping the personalized atrophy network associated with treatment outcomes of patients with schizophrenia.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 59 条
  • [1] Imaging structural co-variance between human brain regions
    Alexander-Bloch, Aaron
    Giedd, Jay N.
    Bullmore, Edward T.
    [J]. NATURE REVIEWS NEUROSCIENCE, 2013, 14 (05) : 322 - 336
  • [2] Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk
    Alnaes, Dag
    Kaufmann, Tobias
    van der Meer, Dennis
    Cordova-Palomera, Aldo
    Rokicki, Jaroslav
    Moberget, Torgeir
    Bettella, Francesco
    Agartz, Ingrid
    Barch, Deanna M.
    Bertolino, Alessandro
    Brandt, Christine L.
    Cervenka, Simon
    Djurovic, Srdjan
    Nhat Trung Doan
    Eisenacher, Sarah
    Fatouros-Bergman, Helena
    Flyckt, Lena
    Di Giorgio, Annabella
    Haatveit, Beathe
    Jonsson, Erik G.
    Kirsch, Peter
    Lund, Martina J.
    Meyer-Lindenberg, Andreas
    Pergola, Giulio
    Schwarz, Emanuel
    Smeland, Olav B.
    Quarto, Tiziana
    Zink, Mathias
    Andreassen, Ole A.
    Westlye, Lars T.
    Farde, Lars
    Collste, Karin
    Victorsson, Pauliina
    Engberg, Goran
    Erhardt, Sophie
    Malmqvist, Anna
    Hedberg, Mikael
    Orhan, Funda
    Sellgren, Carl M.
    Schwieler, Lilly
    Piehl, Fredrik
    [J]. JAMA PSYCHIATRY, 2019, 76 (07) : 739 - 748
  • [3] A fast diffeomorphic image registration algorithm
    Ashburner, John
    [J]. NEUROIMAGE, 2007, 38 (01) : 95 - 113
  • [4] Network localization of neurological symptoms from focal brain lesions
    Boes, Aaron D.
    Prasad, Sashank
    Liu, Hesheng
    Liu, Qi
    Pascual-Leone, Alvaro
    Caviness, Verne S., Jr.
    Fox, Michael D.
    [J]. BRAIN, 2015, 138 : 3061 - 3075
  • [5] Patient-Tailored, Connectivity-Based Forecasts of Spreading Brain Atrophy
    Brown, Jesse A.
    Deng, Jersey
    Neuhaus, John
    Sible, Isabel J.
    Sias, Ana C.
    Lee, Suzee E.
    Kornak, John
    Marx, Gabe A.
    Karydas, Anna M.
    Spina, Salvatore
    Grinberg, Lea T.
    Coppola, Giovanni
    Geschwind, Dan H.
    Kramer, Joel H.
    Gorno-Tempini, Maria Luisa
    Miller, Bruce L.
    Rosen, Howard J.
    Seeley, William W.
    [J]. NEURON, 2019, 104 (05) : 856 - +
  • [6] Heterogeneity and Homogeneity of Regional Brain Structure in Schizophrenia A Meta-analysis
    Brugger, Stefan P.
    Howes, Oliver D.
    [J]. JAMA PSYCHIATRY, 2017, 74 (11) : 1104 - 1111
  • [7] Complex brain networks: graph theoretical analysis of structural and functional systems
    Bullmore, Edward T.
    Sporns, Olaf
    [J]. NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) : 186 - 198
  • [8] Functional Magnetic Resonance Imaging-Guided Personalization of Transcranial Magnetic Stimulation Treatment for Depression
    Cash, Robin F. H.
    Cocchi, Luca
    Lv, Jinglei
    Fitzgerald, Paul B.
    Zalesky, Andrew
    [J]. JAMA PSYCHIATRY, 2021, 78 (03) : 337 - 339
  • [9] Two distinc neuroanatomica subtypes of schizophrenia revealed using machine learning
    Chand, Ganesh B.
    Dwyer, Dominic B.
    Erus, Guray
    Sotiras, Aristeidis
    Varol, Erdem
    Srinivasan, Dhivya
    Doshi, Jimit
    Pomponio, Raymond
    Pigoni, Alessandro
    Dazzan, Paola
    Kahn, Rene S.
    Schnack, Hugo G.
    Zanetti, Marcus V.
    Meisenzahl, Eva
    Busatto, Geraldo F.
    Crespo-Facorro, Benedicto
    Pantelis, Christos
    Wood, Stephen J.
    Zhuo, Chuanjun
    Shinohara, Russell T.
    Shou, Haochang
    Fan, Yong
    Gur, Ruben C.
    Gur, Raquel E.
    Satterthwaite, Theodore D.
    Koutsouleris, Nikolaos
    Wolf, Daniel H.
    Davatzikos, Christos
    [J]. BRAIN, 2020, 143 : 1027 - 1038
  • [10] Chang M, 2021, MOL PSYCHIATR, V26, P2991, DOI 10.1038/s41380-020-00892-3