Machine learning models are superior to noninvasive tests in identifying clinically significant stages of NAFLD and NAFLD-related cirrhosis

被引:46
作者
Chang, Devon [1 ]
Truong, Emily [2 ]
Mena, Edward A. [3 ]
Pacheco, Fabiana [3 ]
Wong, Micaela [3 ]
Guindi, Maha [4 ]
Todo, Tsuyoshi T. [5 ]
Noureddin, Nabil [6 ]
Ayoub, Walid [2 ,5 ,7 ]
Yang, Ju Dong [2 ,5 ,7 ]
Kim, Irene K. [5 ]
Kohli, Anita [8 ]
Alkhouri, Naim [8 ]
Harrison, Stephen [9 ]
Noureddin, Mazen [2 ,5 ,7 ]
机构
[1] Arnold O Beckman High Sch, Irvine, CA USA
[2] Cedars Sinai Med Ctr, Dept Med, Los Angeles, CA 90048 USA
[3] Calif Liver Inst, Pasadena, CA USA
[4] Cedars Sinai Med Ctr, Dept Pathol, Los Angeles, CA 90048 USA
[5] Cedars Sinai Med Ctr, Comprehens Transplant Ctr, Los Angeles, CA 90048 USA
[6] Univ Calif San Diego, Div Gastroenterol, La Jolla, CA 92093 USA
[7] Cedars Sinai Med Ctr, Karsh Div Gastroenterol & Hepatol, Los Angeles, CA 90048 USA
[8] Arizona Liver Hlth, Phoenix, AZ USA
[9] Univ Oxford, Pinnacle Res Ctr, Live Oak, TX USA
关键词
NONALCOHOLIC STEATOHEPATITIS; LIVER FIBROSIS; CHRONIC HEPATITIS; PROSPECTIVE DERIVATION; SCORING SYSTEM; BIOPSY; VALIDATION; DIAGNOSIS; MARKERS;
D O I
10.1002/hep.32655
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and Aims We assessed the performance of machine learning (ML) models in identifying clinically significant NAFLD-associated liver fibrosis and cirrhosis. Approach and Results We implemented ML models including logistic regression (LR), random forest (RF), and artificial neural network to predict histological stages of fibrosis using 17 demographic/clinical features in 1370 patients with NAFLD who underwent liver biopsy, FibroScan, and labs within a 6-month period at multiple U.S. centers. Histological stages of fibrosis (>= F2, >= F3, and F4) were predicted using ML, FibroScan liver stiffness measurements, and Fibrosis-4 index (FIB-4). NASH with significant fibrosis (NAS >= 4 + >= F2) was assessed using ML, FibroScan-AST (FAST) score, FIB-4, and NAFLD fibrosis score (NFS). We used 80% of the cohort to train and 20% to test the ML models. For >= F2, >= F3, F4, and NASH + NAS >= 4 + >= F2, all ML models, especially RF, had primarily higher accuracy and AUC compared with FibroScan, FIB-4, FAST, and NFS. AUC for RF versus FibroScan and FIB-4 for >= F2, >= F3, and F4 were (0.86 vs. 0.81, 0.78), (0.89 vs. 0.83, 0.82), and (0.89 vs. 0.86, 0.85), respectively. AUC for RF versus FAST, FIB-4, and NFS for NASH + NAS >= 4 + >= F2 were (0.80 vs. 0.77, 0.66, 0.63). For NASH + NAS >= 4 + >= F2, all ML models had lower/similar percentages within the indeterminate zone compared with FIB-4 and NFS. Overall, ML models performed better in sensitivity, specificity, positive predictive value, and negative predictive value compared with traditional noninvasive tests. Conclusions ML models performed better overall than FibroScan, FIB-4, FAST, and NFS. ML could be an effective tool for identifying clinically significant liver fibrosis and cirrhosis in patients with NAFLD.
引用
收藏
页码:546 / 557
页数:12
相关论文
共 37 条
[1]   Detecting liver fibrosis using a machine learning-based approach to the quantification of the heart-induced deformation in tagged MR images [J].
Ahmed, Yasmine ;
Hussein, Rasha S. ;
Basha, Tamer A. ;
Khalifa, Ayman M. ;
Ibrahim, Ahmed S. ;
Abdelmoaty, Ahmed S. ;
Abdella, Heba M. ;
Fahmy, Ahmed S. .
NMR IN BIOMEDICINE, 2020, 33 (01)
[2]   The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD [J].
Angulo, Paul ;
Hui, Jason M. ;
Marchesini, Giulio ;
Bugianesi, Ellisabetta ;
George, Jacob ;
Farrell, Geoffrey C. ;
Enders, Felicity ;
Saksena, Sushma ;
Burt, Alastair D. ;
Bida, John P. ;
Lindor, Keith ;
Sanderson, Schuyler O. ;
Lenzi, Marco ;
Adams, Leon A. ;
Kench, James ;
Therneau, Terry M. ;
Day, Christopher P. .
HEPATOLOGY, 2007, 45 (04) :846-854
[3]   Innate Immunity and Inflammation in NAFLD/NASH [J].
Arrese, Marco ;
Cabrera, Daniel ;
Kalergis, Alexis M. ;
Feldstein, Ariel E. .
DIGESTIVE DISEASES AND SCIENCES, 2016, 61 (05) :1294-1303
[4]   Multiple imputation by chained equations: what is it and how does it work? [J].
Azur, Melissa J. ;
Stuart, Elizabeth A. ;
Frangakis, Constantine ;
Leaf, Philip J. .
INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, 2011, 20 (01) :40-49
[5]  
Bastanlar Y, 2014, METHODS MOL BIOL, V1107, P105, DOI 10.1007/978-1-62703-748-8_7
[6]   Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients [J].
Bedossa, Pierre ;
Poitou, Christine ;
Veyrie, Nicolas ;
Bouillot, Jean-Luc ;
Basdevant, Arnaud ;
Paradis, Valerie ;
Tordjman, Joan ;
Clement, Karine .
HEPATOLOGY, 2012, 56 (05) :1751-1759
[7]  
Braticevici CF., 2011, LIVER BIOPSY, V1, P225
[8]   Nonalcoholic steatohepatitis: A proposal for grading and staging the histological lesions [J].
Brunt, EM ;
Janney, CG ;
Di Bisceglie, AM ;
Neuschwander-Tetri, BA ;
Bacon, BR .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 1999, 94 (09) :2467-2474
[9]   Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent-enhanced CT Images in the Liver [J].
Choi, Kyu Jin ;
Jang, Jong Keon ;
Lee, Seung Soo ;
Sung, Yu Sub ;
Shim, Woo Hyun ;
Kim, Ho Sung ;
Yun, Jessica ;
Choi, Jin-Young ;
Lee, Yedaun ;
Kang, Bo-Kyeong ;
Kim, Jin Hee ;
Kim, So Yeon ;
Yu, Eun Sil .
RADIOLOGY, 2018, 289 (03) :688-697
[10]   Application of Artificial Intelligence for Diagnosis and Risk Stratification in NAFLD and NASH: The State of the Art [J].
Dinani, Amreen M. ;
Kowdley, Kris V. ;
Noureddin, Mazen .
HEPATOLOGY, 2021, 74 (04) :2233-2240