A Bayesian multivariate mixture model for high throughput spatial transcriptomics

被引:5
作者
Allen, Carter [1 ,4 ]
Chang, Yuzhou [1 ,4 ]
Neelon, Brian [2 ]
Chang, Won [3 ]
Kim, Hang J. [3 ]
Li, Zihai [4 ]
Ma, Qin [1 ,4 ]
Chung, Dongjun [1 ,4 ]
机构
[1] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[2] Med Univ South Carolina, Dept Publ Hlth Sci, Charleston, SC 29425 USA
[3] Univ Cincinnati, Div Stat & Data Sci, Cincinnati, OH USA
[4] Ohio State Univ, Comprehens Canc Ctr, Pelotonia Inst Immunooncol, Columbus, OH 43210 USA
关键词
Bayesian models; conditionally autoregressive models; mixture models; skew-normal; spatial transcriptomics; SINGLE-CELL; INFERENCE;
D O I
10.1111/biom.13727
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
High throughput spatial transcriptomics (HST) is a rapidly emerging class of experimental technologies that allow for profiling gene expression in tissue samples at or near single-cell resolution while retaining the spatial location of each sequencing unit within the tissue sample. Through analyzing HST data, we seek to identify sub-populations of cells within a tissue sample that may inform biological phenomena. Existing computational methods either ignore the spatial heterogeneity in gene expression profiles, fail to account for important statistical features such as skewness, or are heuristic-based network clustering methods that lack the inferential benefits of statistical modeling. To address this gap, we develop SPRUCE: a Bayesian spatial multivariate finite mixture model based on multivariate skew-normal distributions, which is capable of identifying distinct cellular sub-populations in HST data. We further implement a novel combination of Polya-Gamma data augmentation and spatial random effects to infer spatially correlated mixture component membership probabilities without relying on approximate inference techniques. Via a simulation study, we demonstrate the detrimental inferential effects of ignoring skewness or spatial correlation in HST data. Using publicly available human brain HST data, SPRUCE outperforms existing methods in recovering expertly annotated brain layers. Finally, our application of SPRUCE to human breast cancer HST data indicates that SPRUCE can distinguish distinct cell populations within the tumor microenvironment. An R package spruce for fitting the proposed models is available through The Comprehensive R Archive Network.
引用
收藏
页码:1775 / 1787
页数:13
相关论文
共 41 条
  • [21] ADAPTATION - STATISTICS AND A NULL MODEL FOR ESTIMATING PHYLOGENETIC EFFECTS
    GITTLEMAN, JL
    KOT, M
    [J]. SYSTEMATIC ZOOLOGY, 1990, 39 (03): : 227 - 241
  • [22] Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
    Hafemeister, Christoph
    Satija, Rahul
    [J]. GENOME BIOLOGY, 2019, 20 (01)
  • [23] Integrated analysis of multimodal single-cell data
    Hao, Yuhan
    Hao, Stephanie
    Andersen-Nissen, Erica
    Mauck, William M. I. I. I. I. I. I.
    Zheng, Shiwei
    Butler, Andrew
    Lee, Maddie J.
    Wilk, Aaron J.
    Darby, Charlotte
    Zager, Michael
    Hoffman, Paul
    Stoeckius, Marlon
    Papalexi, Efthymia
    Mimitou, Eleni P.
    Jain, Jaison
    Srivastava, Avi
    Stuart, Tim
    Fleming, Lamar M.
    Yeung, Bertrand
    Rogers, Angela J.
    McElrath, Juliana M.
    Blish, Catherine A.
    Gottardo, Raphael
    Smibert, Peter
    Satija, Rahul
    [J]. CELL, 2021, 184 (13) : 3573 - +
  • [24] COMPARING PARTITIONS
    HUBERT, L
    ARABIE, P
    [J]. JOURNAL OF CLASSIFICATION, 1985, 2 (2-3) : 193 - 218
  • [25] Joanes DN, 1998, J ROY STAT SOC D-STA, V47, P183
  • [26] Long noncoding RNA MALAT1 suppresses breast cancer metastasis
    Kim, Jongchan
    Piao, Hai-Long
    Kim, Beom-Jun
    Yao, Fan
    Han, Zhenbo
    Wang, Yumeng
    Xiao, Zhenna
    Siverly, Ashley N.
    Lawhon, Sarah E.
    Ton, Baochau N.
    Lee, Hyemin
    Zhou, Zhicheng
    Gan, Boyi
    Nakagawa, Shinichi
    Ellis, Matthew J.
    Liang, Han
    Hung, Mien-Chie
    You, M. James
    Sun, Yutong
    Ma, Li
    [J]. NATURE GENETICS, 2018, 50 (12) : 1705 - +
  • [27] Spatially resolved transcriptomics and its applications in cancer
    Maniatis, Silas
    Petrescu, Joana
    Phatnani, Hemali
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2021, 66 : 70 - 77
  • [28] Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis
    Mantri, Madhav
    Scuderi, Gaetano J.
    Abedini-Nassab, Roozbeh
    Wang, Michael F. Z.
    McKellar, David
    Shi, Hao
    Grodner, Benjamin
    Butcher, Jonathan T.
    De Vlaminck, Iwijn
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [29] Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex
    Maynard, Kristen R.
    Collado-Torres, Leonardo
    Weber, Lukas M.
    Uytingco, Cedric
    Barry, Brianna K.
    Williams, Stephen R.
    Catallini, Joseph L., II
    Tran, Matthew N.
    Besich, Zachary
    Tippani, Madhavi
    Chew, Jennifer
    Yin, Yifeng
    Kleinman, Joel E.
    Hyde, Thomas M.
    Rao, Nikhil
    Hicks, Stephanie C.
    Martinowich, Keri
    Jaffe, Andrew E.
    [J]. NATURE NEUROSCIENCE, 2021, 24 (03) : 425 - 436
  • [30] McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, 10.21105/joss.00861, DOI 10.21105/JOSS.00861]