Enhanced capacity of all-solid-state battery comprising LiNbO3-coated Li(Ni0.8Co0.1Mn0.1)O2 Cathode, Li5.4(PS4)(S0.4Cl1.0Br0.6) solid electrolyte and lithium metal anode

被引:3
作者
Masuda, Naoya [1 ,2 ]
Kobayashi, Kiyoshi [3 ]
Utsuno, Futoshi [1 ]
Kuwata, Naoaki [2 ,4 ]
机构
[1] Idemitsu Kosan Co Ltd, Res Ctr Battery Mat, Sodegaura, Chiba 2990293, Japan
[2] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido 0608628, Japan
[3] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[4] Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词
All-solid-state battery; Argyrodite; Halogen-rich; High capacity; Solid electrolyte; IONIC-CONDUCTIVITY; ELECTROCHEMICAL REDOX; COMPOSITE CATHODES; PERFORMANCE; ADDITIVES; IMPEDANCE; BEHAVIOR; SYSTEM; LICOO2; NCM;
D O I
10.1007/s10008-024-05886-7
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
All-solid-state lithium-ion batteries are a promising next-generation technology because they have higher energy densities than their liquid-electrolyte counterparts. Halogen-rich argyrodite, specifically Li-5.4(PS4)(S0.4Cl1.0Br0.6), was recently shown to have higher ionic conductivities compared with those of other argyrodite-like sulfides. Although the Li-5.4(PS4)(S0.4Cl1.0Br0.6) in Li | Li-5.4(PS4)(S0.4Cl1.0Br0.6) | Li(Ni0.8Co0.1Mn0.1)O-2-Li-5.4(PS4)(S0.4Cl1.0Br0.6) batteries have shown good electrochemical stability, the low discharge capacity limits the application of the battery. In continuation, this study examined the potential of a carbon additive for altering the electronic conductivity of the cathode and enhancing the capacity of Li | Li-5.4(PS4)(S0.4Cl1.0Br0.6) | Li(Ni0.8Co0.1Mn0.1)O-2-Li-5.4(PS4)(S0.4Cl1.0Br0.6) batteries. After a 50-cycle charge/discharge, the carbon additive (0.1 C) enhanced the discharge capacity from 3.1 to 167 mAh/g, resulted in a capacity retention rate and coulombic efficiency of 95.4% and 99.9% when using 0.1 C and 0.5 C, respectively, and increased the resistance of the battery from 53 to 56 Omega. Therefore, the all-solid-state battery employing high-ion-conductive Li-5.4(PS4)(S0.4Cl1.0Br0.6) and a carbon-modified cathode showed improved capacity. This study provides a proven framework for developing all-solid-state batteries employing halogen-rich argyrodite (Li7-alpha(PS4)(S2-alpha X alpha); alpha > 1) with enhanced ionic conductivities.
引用
收藏
页码:4409 / 4417
页数:9
相关论文
共 60 条
[11]   Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+ Hopping in Argyrodite-Type Li6PS5Br [J].
Epp, Viktor ;
Guen, Oezguel ;
Deiseroth, Hans-Joerg ;
Wilkening, Martin .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (13) :2118-2123
[12]   Achieving stable all-solid-state lithium- metal batteries by tuning the cathode- electrolyte interface and ionic/electronic transport within the cathode [J].
Fang, Ruyi ;
Liu, Yijie ;
Li, Yutao ;
Manthiram, Arumugam ;
Goodenough, John B. .
MATERIALS TODAY, 2023, 64 :52-60
[13]   Solid-state lithium battery cathodes operating at low pressures [J].
Gao, Xiangwen ;
Liu, Boyang ;
Hu, Bingkun ;
Ning, Ziyang ;
Jolly, Dominic Spencer ;
Zhang, Shengming ;
Perera, Johann ;
Bu, Junfu ;
Liu, Junliang ;
Doerrer, Christopher ;
Darnbrough, Ed ;
Armstrong, David ;
Grant, Patrick S. ;
Bruce, Peter G. .
JOULE, 2022, 6 (03) :636-646
[14]   Engineering the Site-Disorder and Lithium Distribution in the Lithium Superionic Argyrodite Li6PS5Br [J].
Gautam, Ajay ;
Sadowski, Marcel ;
Ghidiu, Michael ;
Minafra, Nicolo ;
Senyshyn, Anatoliy ;
Albe, Karsten ;
Zeier, Wolfgang G. .
ADVANCED ENERGY MATERIALS, 2021, 11 (05)
[15]   Structural and Electronic-State Changes of a Sulfide Solid Electrolyte during the Li Deinsertion-Insertion Processes [J].
Hakari, Takashi ;
Deguchi, Minako ;
Mitsuhara, Kei ;
Ohta, Toshiaki ;
Saita, Kohei ;
Orikasa, Yuki ;
Uchimoto, Yoshiharu ;
Kowada, Yoshiyuki ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4768-4774
[16]   A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations [J].
Hannan, M. A. ;
Lipu, M. S. H. ;
Hussain, A. ;
Mohamed, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 78 :834-854
[17]   Dry mixing of cathode composite powder for all-solid-state batteries using a high-shear mixer [J].
Hayakawa, Eiji ;
Nakamura, Hideya ;
Ohsaki, Shuji ;
Watano, Satoru .
ADVANCED POWDER TECHNOLOGY, 2022, 33 (08)
[18]   Characterization of solid-electrolyte/active-material composite particles with different surface morphologies for all-solid-state batteries [J].
Hayakawa, Eiji ;
Nakamura, Hideya ;
Ohsaki, Shuji ;
Watano, Satoru .
ADVANCED POWDER TECHNOLOGY, 2022, 33 (03)
[19]   Review of solutions to global warming, air pollution, and energy security [J].
Jacobson, Mark Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (02) :148-173
[20]   Operando Differential Electrochemical Pressiometry for Probing Electrochemo-Mechanics in All-Solid-State Batteries [J].
Jun, Seunggoo ;
Nam, Young Jin ;
Kwak, Hiram ;
Kim, Kyu Tae ;
Oh, Dae Yang ;
Jung, Yoon Seok .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (31)