INNER PRODUCT INEQUALITIES THROUGHCARTESIAN DECOMPOSITION WITH APPLICATIONSTO NUMERICAL RADIUS INEQUALITIES

被引:1
作者
Nourbakhsh, Saeedatossadat [1 ]
Hassani, Mahmoud [1 ]
Omidvar, Mohsen Erfanian [1 ]
Moradi, Hamid Reza [1 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Dept Math, Mashhad, Iran
来源
OPERATORS AND MATRICES | 2024年 / 18卷 / 01期
关键词
Numerical radius; operator norm; inner product; Cartesian decomposition; OPERATORS; NORM;
D O I
10.7153/oam-2024-18-05
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper intends to show several inner product inequalities using the Cartesian de-composition of the operator. We utilize the obtained results to get norm and numerical radiusinequalities. Our results extend and improvesome earlier inequalities. Among other inequalities,it is revealed that ifTis anxncomplex matrix with the imaginary partIT=T-T*2i,then12max(parallel to parallel to TT*-iIT2 parallel to parallel to 12,parallel to parallel to T*T+iIT2 parallel to parallel to 12)omega(T)which is a significant improvement of the classical inequality12||T||omega(T).
引用
收藏
页码:69 / 81
页数:13
相关论文
共 22 条
  • [1] A novel numerical radius upper bounds for 2 x 2 operator matrices
    Al-Dolat, Mohammed
    Jaradat, Imad
    Al-Husban, Baraa
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06) : 1173 - 1184
  • [2] ON THE SINGULAR-VALUES OF A PRODUCT OF OPERATORS
    BHATIA, R
    KITTANEH, F
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) : 272 - 277
  • [3] Refinement of numerical radius inequalities of complex Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (3-4): : 427 - 436
  • [4] New upper bounds for the numerical radius of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
  • [5] Buzano M.L., 1971, Rend. Sem. Mat. Univ. e Politec. Torino, V31, P405
  • [6] Dragomir S. S., 2009, Sarajevo J. Math, V5, P269
  • [7] Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces
    Dragomir, Sever S.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (01) : 256 - 264
  • [8] Numerical radius inequalities for Hilbert space operators. II
    El-Haddad, Mohammad
    Kittaneh, Fuad
    [J]. STUDIA MATHEMATICA, 2007, 182 (02) : 133 - 140
  • [9] Furuta T., 2001, INVITATION LINEAR OP
  • [10] Gümüs IH, 2022, ELECTRON J LINEAR AL, V38, P792