EXISTENCE AND ASYMPTOTICAL BEHAVIOR OF GROUND STATE SOLUTIONS FOR FRACTIONAL SCHRODINGER-KIRCHHOFF TYPE EQUATIONS

被引:0
作者
Xiong, Chawen [1 ]
Chen, Chunfang [1 ]
Chen, Jianhua [1 ]
Sun, Jijiang [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
来源
FIXED POINT THEORY | 2024年 / 25卷 / 01期
关键词
Schrodinger-Kirchhoff equation; fractional p-Laplacian; ground state solution; asymptotical behavior; steep well potential; fixed point; POSITIVE SOLUTIONS;
D O I
10.24193/fpt-ro.2025.1.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Schrodinger-Kirchhoff type equations involving the fractional p -Laplacian M([u](s,p)(p))(-Delta)(p)(s)u + (1 + lambda g(x))u(p-1) = H(x)u(q-1), u > 0, x is an element of R-N, where s is an element of (0, 1), 2 <= p < infinity, ps < N and (-Delta)(p)(s) is the fractional p -Laplacian operator. M(t) = a + bt(k), where a, k > 0 and b >= 0 are constants. lambda > 0 is a real parameter. p(k + 1) < q < p(s)(& lowast;), where p(s)(& lowast;)= Np/ N-ps is the fractional Sobolev critical exponent. Under some appropriate assumptions on g(x) and H(x), we obtain the existence of positive ground state solutions and discuss their asymptotical behavior via the method used by Bartsch and Wang [Multiple positive solutions for a nonlinear Schrodinger equation. Z. Angew. Math. Phys. 51 (2000) 366-384].
引用
收藏
页码:399 / 418
页数:20
相关论文
共 31 条
  • [21] Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian
    Liu, Senli
    Chen, Haibo
    Yang, Jie
    Su, Yu
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [22] Multiplicity results of nonlinear fractional magnetic Schrodinger equation with steep potential
    Mao, Suzhen
    Xia, Aliang
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 97 : 73 - 80
  • [23] On Critical Schrodinger-Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity
    Nguyen Van Thin
    Xiang, Mingqi
    Zhang, Binlin
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [24] ENTIRE SOLUTIONS FOR CRITICAL p-FRACTIONAL HARDY SCHRODINGER KIRCHHOFF EQUATIONS
    Piersanti, Paolo
    Pucci, Patrizha
    [J]. PUBLICACIONS MATEMATIQUES, 2018, 62 (01) : 3 - 36
  • [25] Pucci P, 2015, CALC VAR PARTIAL DIF, V54, P2785, DOI 10.1007/s00526-015-0883-5
  • [26] Wang L, 2016, ELECTRON J DIFFER EQ
  • [27] A Nonhomogeneous Fractional p-Kirchhoff Type Problem Involving Critical Exponent in RN
    Xiang, Mingqi
    Zhang, Binlin
    Zhang, Xia
    [J]. ADVANCED NONLINEAR STUDIES, 2017, 17 (03) : 611 - 640
  • [28] NONLOCAL SCHRODINGER-KIRCHHOFF EQUATIONS WITH EXTERNAL MAGNETIC FIELD
    Xiang, Mingqi
    Pucci, Patrizia
    Squassina, Marco
    Zhang, Binlin
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (03) : 1631 - 1649
  • [29] Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well
    Zhang, Fubao
    Du, Miao
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 10085 - 10106
  • [30] Ground state of Kirchhoff type fractional Schrodinger equations with critical growth
    Zhang, Jian
    Lou, Zhenluo
    Ji, Yanju
    Shao, Wei
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 57 - 83