EXISTENCE AND ASYMPTOTICAL BEHAVIOR OF GROUND STATE SOLUTIONS FOR FRACTIONAL SCHRODINGER-KIRCHHOFF TYPE EQUATIONS

被引:0
作者
Xiong, Chawen [1 ]
Chen, Chunfang [1 ]
Chen, Jianhua [1 ]
Sun, Jijiang [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
来源
FIXED POINT THEORY | 2024年 / 25卷 / 01期
关键词
Schrodinger-Kirchhoff equation; fractional p-Laplacian; ground state solution; asymptotical behavior; steep well potential; fixed point; POSITIVE SOLUTIONS;
D O I
10.24193/fpt-ro.2025.1.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Schrodinger-Kirchhoff type equations involving the fractional p -Laplacian M([u](s,p)(p))(-Delta)(p)(s)u + (1 + lambda g(x))u(p-1) = H(x)u(q-1), u > 0, x is an element of R-N, where s is an element of (0, 1), 2 <= p < infinity, ps < N and (-Delta)(p)(s) is the fractional p -Laplacian operator. M(t) = a + bt(k), where a, k > 0 and b >= 0 are constants. lambda > 0 is a real parameter. p(k + 1) < q < p(s)(& lowast;), where p(s)(& lowast;)= Np/ N-ps is the fractional Sobolev critical exponent. Under some appropriate assumptions on g(x) and H(x), we obtain the existence of positive ground state solutions and discuss their asymptotical behavior via the method used by Bartsch and Wang [Multiple positive solutions for a nonlinear Schrodinger equation. Z. Angew. Math. Phys. 51 (2000) 366-384].
引用
收藏
页码:399 / 418
页数:20
相关论文
共 31 条
[11]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[12]   A critical Kirchhoff type problem involving a nonlocal operator [J].
Fiscella, Alessio ;
Valdinoci, Enrico .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 :156-170
[13]  
Franzina G, 2014, RIV MAT UNIV PARMA, V5, P373
[14]   Existence and concentration of positive solutions for quasilinear Schrodinger equations with critical growth [J].
He, Xiaoming ;
Qian, Aixia ;
Zou, Wenming .
NONLINEARITY, 2013, 26 (12) :3137-3168
[15]   Weyl-type laws for fractional p-eigenvalue problems [J].
Iannizzotto, Antonio ;
Squassina, Marco .
ASYMPTOTIC ANALYSIS, 2014, 88 (04) :233-245
[16]  
Kirchhoff G., 1883, Mechanik
[17]   Fractional magnetic Schrodinger-Kirchhoff problems with convolution and critical nonlinearities [J].
Liang, Sihua ;
Repovs, Dusan D. ;
Zhang, Binlin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) :2473-2490
[18]   On the fractional Schrodinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity [J].
Liang, Sihua ;
Repovs, Dusan ;
Zhang, Binlin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (05) :1778-1794
[19]  
Liang SH, 2017, Z ANGEW MATH PHYS, V68, DOI 10.1007/s00033-017-0805-9
[20]   Fractional eigenvalues [J].
Lindgren, Erik ;
Lindqvist, Peter .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :795-826