EXISTENCE AND ASYMPTOTICAL BEHAVIOR OF GROUND STATE SOLUTIONS FOR FRACTIONAL SCHRODINGER-KIRCHHOFF TYPE EQUATIONS

被引:0
作者
Xiong, Chawen [1 ]
Chen, Chunfang [1 ]
Chen, Jianhua [1 ]
Sun, Jijiang [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
来源
FIXED POINT THEORY | 2024年 / 25卷 / 01期
关键词
Schrodinger-Kirchhoff equation; fractional p-Laplacian; ground state solution; asymptotical behavior; steep well potential; fixed point; POSITIVE SOLUTIONS;
D O I
10.24193/fpt-ro.2025.1.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Schrodinger-Kirchhoff type equations involving the fractional p -Laplacian M([u](s,p)(p))(-Delta)(p)(s)u + (1 + lambda g(x))u(p-1) = H(x)u(q-1), u > 0, x is an element of R-N, where s is an element of (0, 1), 2 <= p < infinity, ps < N and (-Delta)(p)(s) is the fractional p -Laplacian operator. M(t) = a + bt(k), where a, k > 0 and b >= 0 are constants. lambda > 0 is a real parameter. p(k + 1) < q < p(s)(& lowast;), where p(s)(& lowast;)= Np/ N-ps is the fractional Sobolev critical exponent. Under some appropriate assumptions on g(x) and H(x), we obtain the existence of positive ground state solutions and discuss their asymptotical behavior via the method used by Bartsch and Wang [Multiple positive solutions for a nonlinear Schrodinger equation. Z. Angew. Math. Phys. 51 (2000) 366-384].
引用
收藏
页码:399 / 418
页数:20
相关论文
共 31 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]   Concentration phenomena for a fractional Schrodinger-Kirchhoff type equation [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) :615-645
[3]  
Ayazoglu R, 2021, COLLECT MATH, V72, P129, DOI 10.1007/s13348-020-00283-5
[4]   Multiple positive solutions for a nonlinear Schrodinger equation [J].
Bartsch, T ;
Wang, ZQ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03) :366-384
[5]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[6]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[7]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[8]   Multiple solutions for p-Kirchhoff equations in RN [J].
Chen, Caisheng ;
Song, Hongxue ;
Xiu, Zhonghu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 :146-156
[9]   New existence of multiple solutions for nonhomogeneous Schrodinger-Kirchhoff problems involving the fractional p-Laplacian with sign-changing potential [J].
Chen, Jianhua ;
Cheng, Bitao ;
Tang, Xianhua .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (01) :153-176
[10]   Asymptotical behavior of ground state solutions for critical quasilinear Schrodinger equation [J].
Chen, Yongpeng ;
Guo, Yuxia ;
Tang, Zhongwei .
FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) :21-46