Computational pathology-based weakly supervised prediction model for MGMT promoter methylation status in glioblastoma

被引:0
|
作者
He, Yongqi [1 ]
Duan, Ling [1 ]
Dong, Gehong [2 ]
Chen, Feng [1 ]
Li, Wenbin [1 ]
机构
[1] Capital Med Univ, Beijing Tiantan Hosp, Canc Ctr, Dept Neurooncol, Beijing, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, Dept Pathol, Beijing, Peoples R China
来源
FRONTIERS IN NEUROLOGY | 2024年 / 15卷
关键词
computational pathology; glioblastoma; deep learning; MGMT; diagnostic; TEMOZOLOMIDE;
D O I
10.3389/fneur.2024.1345687
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction The methylation status of oxygen 6-methylguanine-DNA methyltransferase (MGMT) is closely related to the treatment and prognosis of glioblastoma. However, there are currently some challenges in detecting the methylation status of MGMT promoters. The hematoxylin and eosin (H&E)-stained histopathological slides have always been the gold standard for tumor diagnosis.Methods In this study, based on the TCGA database and H&E-stained Whole slide images (WSI) of Beijing Tiantan Hospital, we constructed a weakly supervised prediction model of MGMT promoter methylation status in glioblastoma by using two Transformer structure models.Results The accuracy scores of this model in the TCGA dataset and our independent dataset were 0.79 (AUC = 0.86) and 0.76 (AUC = 0.83), respectively.Conclusion The model demonstrates effective prediction of MGMT promoter methylation status in glioblastoma and exhibits some degree of generalization capability. At the same time, our study also shows that adding Patches automatic screening module to the computational pathology research framework of glioma can significantly improve the model effect.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Perfusion parameters derived from MRI for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas
    Lu, Jun
    Li, Xiang
    Li, Hailiang
    MAGNETIC RESONANCE IMAGING, 2021, 83 : 189 - 195
  • [42] MGMT Promoter Methylation Status in Initial and Recurrent Glioblastoma: Correlation Study with DWI and DSC PWI Features
    Choi, H. J.
    Choi, S. H.
    You, S. -H.
    Yoo, R. -E.
    Kang, K. M.
    Yun, T. J.
    Kim, J. -h.
    Sohn, C. -H.
    Park, C. -K.
    Park, S. -H.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (05) : 853 - 860
  • [43] Treatment benefit in patients aged 80 years or older with biopsy-proven and non-resected glioblastoma is dependent on MGMT promoter methylation status
    Weller, Jonathan
    Katzendobler, Sophie
    Niedermeyer, Sebastian
    Harter, Patrick N.
    Herms, Jochen
    Trumm, Christoph
    Niyazi, Maximilian
    Thon, Niklas
    Tonn, Joerg-Christian
    Stoecklein, Veit M.
    JOURNAL OF NEURO-ONCOLOGY, 2023, 163 (02) : 407 - 415
  • [44] Treatment benefit in patients aged 80 years or older with biopsy-proven and non-resected glioblastoma is dependent on MGMT promoter methylation status
    Jonathan Weller
    Sophie Katzendobler
    Sebastian Niedermeyer
    Patrick N. Harter
    Jochen Herms
    Christoph Trumm
    Maximilian Niyazi
    Niklas Thon
    Joerg-Christian Tonn
    Veit M. Stoecklein
    Journal of Neuro-Oncology, 2023, 163 : 407 - 415
  • [45] Prognostic role and interaction of TERT promoter status, telomere length and MGMT promoter methylation in newly diagnosed IDH wild-type glioblastoma patients
    Giunco, S.
    Padovan, M.
    Angelini, C.
    Cavallin, F.
    Cerretti, G.
    Morello, M.
    Caccese, M.
    Rizzo, B.
    d'Avella, D.
    Puppa, A. D.
    Chioffi, F.
    De Bonis, P.
    Zagonel, V.
    De Rossi, A.
    Lombardi, G.
    ESMO OPEN, 2023, 8 (03)
  • [46] Prediction of MGMT promotor methylation status in glioblastoma by contrast-enhanced T1-weighted intensity image
    Sanada, Takahiro
    Kinoshita, Manabu
    Sasaki, Takahiro
    Yamamoto, Shota
    Fujikawa, Seiya
    Fukuyama, Shusei
    Hayashi, Nobuhide
    Fukai, Junya
    Okita, Yoshiko
    Nonaka, Masahiro
    Uda, Takehiro
    Arita, Hideyuki
    Mori, Kanji
    Ishibashi, Kenichi
    Takano, Koji
    Nishida, Namiko
    Shofuda, Tomoko
    Yoshioka, Ema
    Kanematsu, Daisuke
    Tanino, Mishie
    Kodama, Yoshinori
    Mano, Masayuki
    Kanemura, Yonehiro
    NEURO-ONCOLOGY ADVANCES, 2024, 6 (01)
  • [48] MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
    Yogananda, C. G. B.
    Shah, B. R.
    Nalawade, S. S.
    Murugesan, G. K.
    Yu, F. F.
    Pinho, M. C.
    Wagner, B. C.
    Mickey, B.
    Patel, T. R.
    Fei, B.
    Madhuranthakam, A. J.
    Maldjian, J. A.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (05) : 845 - 852
  • [49] Prognostic value of MGMT promoter methylation in glioblastoma patients treated with temozolomide-based chemoradiation: A Portuguese multicentre study
    Costa, Bruno M.
    Caeiro, Claudia
    Gumaraes, Ines
    Martinho, Olga
    Jaraquemada, Teresa
    Augusto, Isabel
    Castro, Ligia
    Osorio, Ligia
    Linhares, Paulo
    Honavar, Mrinalini
    Resende, Mario
    Braga, Fatima
    Silva, Ana
    Pardal, Fernando
    Amorim, Julia
    Nabico, Rui
    Almeida, Rui
    Alegria, Carlos
    Pires, Manuel
    Pinheiro, Celia
    Carvalho, Ernesto
    Lopes, Jose M.
    Costa, Paulo
    Damasceno, Margarida
    Reis, Rui M.
    ONCOLOGY REPORTS, 2010, 23 (06) : 1655 - 1662
  • [50] MGMT ProFWise: Unlocking a New Application for Combined Feature Selection and the Rank-Based Weighting Method to Link MGMT Methylation Status to Serum Protein Expression in Patients with Glioblastoma
    Tasci, Erdal
    Shah, Yajas
    Jagasia, Sarisha
    Zhuge, Ying
    Shephard, Jason
    Johnson, Margaret O.
    Elemento, Olivier
    Joyce, Thomas
    Chappidi, Shreya
    Zgela, Theresa Cooley
    Sproull, Mary
    Mackey, Megan
    Camphausen, Kevin
    Krauze, Andra Valentina
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (07)