Computational pathology-based weakly supervised prediction model for MGMT promoter methylation status in glioblastoma

被引:0
|
作者
He, Yongqi [1 ]
Duan, Ling [1 ]
Dong, Gehong [2 ]
Chen, Feng [1 ]
Li, Wenbin [1 ]
机构
[1] Capital Med Univ, Beijing Tiantan Hosp, Canc Ctr, Dept Neurooncol, Beijing, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, Dept Pathol, Beijing, Peoples R China
来源
FRONTIERS IN NEUROLOGY | 2024年 / 15卷
关键词
computational pathology; glioblastoma; deep learning; MGMT; diagnostic; TEMOZOLOMIDE;
D O I
10.3389/fneur.2024.1345687
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction The methylation status of oxygen 6-methylguanine-DNA methyltransferase (MGMT) is closely related to the treatment and prognosis of glioblastoma. However, there are currently some challenges in detecting the methylation status of MGMT promoters. The hematoxylin and eosin (H&E)-stained histopathological slides have always been the gold standard for tumor diagnosis.Methods In this study, based on the TCGA database and H&E-stained Whole slide images (WSI) of Beijing Tiantan Hospital, we constructed a weakly supervised prediction model of MGMT promoter methylation status in glioblastoma by using two Transformer structure models.Results The accuracy scores of this model in the TCGA dataset and our independent dataset were 0.79 (AUC = 0.86) and 0.76 (AUC = 0.83), respectively.Conclusion The model demonstrates effective prediction of MGMT promoter methylation status in glioblastoma and exhibits some degree of generalization capability. At the same time, our study also shows that adding Patches automatic screening module to the computational pathology research framework of glioma can significantly improve the model effect.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] MGMT promoter methylation status as a prognostic factor for the outcome of gamma knife radiosurgery for recurrent glioblastoma
    Kim, Byung Sup
    Kong, Doo-Sik
    Seol, Ho Jun
    Nam, Do-Hyun
    Lee, Jung-Il
    JOURNAL OF NEURO-ONCOLOGY, 2017, 133 (03) : 615 - 622
  • [22] MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges
    Mansouri, Alireza
    Hachem, Laureen D.
    Mansouri, Sheila
    Nassiri, Farshad
    Laperriere, Normand J.
    Xia, Daniel
    Lindeman, Neal I.
    Wen, Patrick Y.
    Chakravarti, Arnab
    Mehta, Minesh P.
    Hegi, Monika E.
    Stupp, Roger
    Aldape, Kenneth D.
    Zadeh, Gelareh
    NEURO-ONCOLOGY, 2019, 21 (02) : 167 - 178
  • [23] Epithelioid glioblastoma changed to typical glioblastoma: the methylation status of MGMT promoter and 5-ALA fluorescence
    Shingo Tanaka
    Mitsutoshi Nakada
    Yutaka Hayashi
    Satoko Nakada
    Seiko Sawada-Kitamura
    Natsuki Furuyama
    Tomohide Suzuki
    Tomoya Kamide
    Yasuhiko Hayashi
    Seiji Yano
    Jun-ichiro Hamada
    Brain Tumor Pathology, 2011, 28 : 59 - 64
  • [24] MGMT promoter methylation prediction based on multiparametric MRI via vision graph neural network
    Hu, Mingzhe
    Yang, Kailin
    Wang, Jing
    Qiu, Richard L. J.
    Roper, Justin
    Kahn, Shannon
    Shu, Hui-Kuo
    Yang, Xiaofeng
    JOURNAL OF MEDICAL IMAGING, 2024, 11 (01)
  • [25] The different role of YKL-40 in glioblastoma is a function of MGMT promoter methylation status
    Chen, Wei-jun
    Zhang, Xiang
    Han, Hua
    Lv, Jian-nan
    Kang, En-ming
    Zhang, Yu-lian
    Liu, Wei-ping
    He, Xiao-sheng
    Wang, James
    Wang, Gui-huai
    Yu, Yan-bing
    Zhang, Wei
    CELL DEATH & DISEASE, 2020, 11 (08)
  • [26] MGMT promoter methylation status prediction using MRI scans? An extensive experimental evaluation of deep learning models
    Saeed, Numan
    Ridzuan, Muhammad
    Alasmawi, Hussain
    Sobirov, Ikboljon
    Yaqub, Mohammad
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [27] Epithelioid glioblastoma changed to typical glioblastoma: the methylation status of MGMT promoter and 5-ALA fluorescence
    Tanaka, Shingo
    Nakada, Mitsutoshi
    Hayashi, Yutaka
    Nakada, Satoko
    Sawada-Kitamura, Seiko
    Furuyama, Natsuki
    Suzuki, Tomohide
    Kamide, Tomoya
    Hayashi, Yasuhiko
    Yano, Seiji
    Hamada, Jun-ichiro
    BRAIN TUMOR PATHOLOGY, 2011, 28 (01) : 59 - 64
  • [28] Preoperative prediction of MGMT promoter methylation in glioblastoma based on multiregional and multi-sequence MRI radiomics analysis
    Li, Lanqing
    Xiao, Feng
    Wang, Shouchao
    Kuang, Shengyu
    Li, Zhiqiang
    Zhong, Yahua
    Xu, Dan
    Cai, Yuxiang
    Li, Sirui
    Chen, Jun
    Liu, Yaou
    Li, Junjie
    Li, Huan
    Xu, Haibo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method
    Rundle-Thiele, Dayle
    Day, Bryan
    Stringer, Brett
    Fay, Michael
    Martin, Jennifer
    Jeffree, Rosalind L.
    Thomas, Paul
    Bell, Christopher
    Salvado, Olivier
    Gal, Yaniv
    Coulthard, Alan
    Crozier, Stuart
    Rose, Stephen
    JOURNAL OF MEDICAL RADIATION SCIENCES, 2015, 62 (02) : 92 - 98
  • [30] INI1 immunohistochemical expression in glioblastoma: correlation with MGMT gene promoter methylation status and patient survival
    Zunarelli, Elena
    Bigiani, Nazzarena
    Sartori, Giuliana
    Migaldi, Mario
    Sgambato, Alessandro
    Maiorana, Antonio
    PATHOLOGY, 2011, 43 (01) : 17 - 23