Stability Bounds for Learning-Based Adaptive Control of Discrete-Time Multi-Dimensional Stochastic Linear Systems with Input Constraints

被引:0
作者
Siriya, Seth [1 ]
Zhu, Jingge [1 ]
Nesic, Dragan [1 ]
Pu, Ye [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
来源
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC | 2023年
基金
澳大利亚研究理事会;
关键词
MEAN-SQUARE BOUNDEDNESS; EXTREMUM SEEKING; STABILIZATION;
D O I
10.1109/CDC49753.2023.10383870
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of adaptive stabilization for discrete-time, multi-dimensional linear systems with bounded control input constraints and unbounded stochastic disturbances, where the parameters of the system are unknown. To address this challenge, we propose a certainty-equivalent control scheme combining online parameter estimation with saturated linear control. We establish the existence of a high probability stability bound on the closed-loop system, under additional assumptions on the system and noise processes. Numerical examples are presented to illustrate our results.
引用
收藏
页码:3802 / 3807
页数:6
相关论文
共 18 条
[1]   Adaptive control of input-constrained type-1 plants stabilization and tracking [J].
Chaoui, FZ ;
Giri, F ;
M'Saad, M .
AUTOMATICA, 2001, 37 (02) :197-203
[2]   On Stability and Performance of Stochastic Predictive Control Techniques [J].
Chatterjee, Debasish ;
Lygeros, John .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (02) :509-514
[3]   On mean square boundedness of stochastic linear systems with bounded controls [J].
Chatterjee, Debasish ;
Ramponi, Federico ;
Hokayem, Peter ;
Lygeros, John .
SYSTEMS & CONTROL LETTERS, 2012, 61 (02) :375-380
[4]   DISCRETE-TIME STOCHASTIC ADAPTIVE-CONTROL [J].
GOODWIN, GC ;
RAMADGE, PJ ;
CAINES, PE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (06) :829-853
[5]   Self-convergence of weighted least-squares with applications to stochastic adaptive control [J].
Guo, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (01) :79-89
[6]  
Kargin T., 2022, PMLR, P3235
[7]  
Li Y, 2021, ARXIV211100411
[8]  
Liu Z., 2022, IEEE T AUTOMATIC CON
[9]   Extremum seeking-based perfect adaptive tracking of non-PE references despite nonvanishing variance of perturbation [J].
Radenkovic, Miloje S. ;
Krstic, Miroslav .
AUTOMATICA, 2018, 93 :189-196
[10]   Stochastic Adaptive Stabilization via Extremum Seeking in Case of Unknown Control Directions [J].
Radenkovic, Miloje S. ;
Altman, Tom .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (11) :3681-3686