Some congruences for e-regular partitions with certain restrictions

被引:1
作者
Yu, Jingjun [1 ]
机构
[1] Hangzhou Polytech, Dept Basic Teaching, Hangzhou 311402, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 03期
关键词
congruences; partitions; Hecke operator; ARITHMETIC PROPERTIES;
D O I
10.3934/math.2024310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let pod (n) and ped, (n) denote the number of f-regular partitions of a positive integer n into distinct odd parts and the number of e-regular partitions of a positive integer n into distinct even parts, respectively. Our first goal in this note was to prove two congruence relations for pod (n). Furthermore, we found a formula for the action of the Hecke operator on a class of eta-quotients. As two applications of this result, we obtained two infinite families of congruence relations for pods(n). We also proved a congruence relation for ped, (n). In particular, we established a congruence relation modulo 2 connecting pod (n) and ped, (n).
引用
收藏
页码:6368 / 6378
页数:11
相关论文
共 14 条
  • [1] Congruences for 2t core partition functions
    Boylan, M
    [J]. JOURNAL OF NUMBER THEORY, 2002, 92 (01) : 131 - 138
  • [2] Congruences for partitions with odd parts distinct modulo 5
    Cui, Su-Ping
    Gu, Wen Xiang
    Ma, Zhen Sheng
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (07) : 2151 - 2159
  • [3] Drema R, 2022, BOL SOC MAT MEX, V28, DOI 10.1007/s40590-021-00402-7
  • [4] New congruences modulo 5 and 9 for partitions with odd parts distinct
    Fang, Houqing
    Xue, Fanggang
    Yao, Olivia X. M.
    [J]. QUAESTIONES MATHEMATICAE, 2020, 43 (11) : 1573 - 1586
  • [5] On 3-regular partitions with odd parts distinct
    Gireesh, D. S.
    Hirschhorn, M. D.
    Naika, M. S. Mahadeva
    [J]. RAMANUJAN JOURNAL, 2017, 44 (01) : 227 - 236
  • [6] Arithmetic Properties of 9-Regular Partitions with Distinct Odd Parts
    Hemanthkumar, B.
    Bharadwaj, H. S. Sumanth
    Naika, M. S. Mahadeva
    [J]. ACTA MATHEMATICA VIETNAMICA, 2019, 44 (03) : 797 - 811
  • [7] Arithmetic properties of partitions with odd parts distinct
    Hirschhorn, Michael D.
    Sellers, James A.
    [J]. RAMANUJAN JOURNAL, 2010, 22 (03) : 273 - 284
  • [8] ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS
    Hirschhorn, Michael D.
    Sellers, James A.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (01) : 58 - 63
  • [9] Lovejoy J., 2011, INTEGERS, V11, DOI 10.1515/integ.2011.004
  • [10] More congruences for the coefficients of quotients of Eisenstein series
    Mahlburg, K
    [J]. JOURNAL OF NUMBER THEORY, 2005, 115 (01) : 89 - 99