AoI-Aware Resource Allocation for Platoon-Based C-V2X Networks via Multi-Agent Multi-Task Reinforcement Learning

被引:32
|
作者
Parvini, Mohammad [1 ]
Javan, Mohammad Reza [2 ]
Mokari, Nader [1 ]
Abbasi, Bijan [1 ]
Jorswieck, Eduard A. [3 ]
机构
[1] Tarbiat Modares Univ, Dept Elect & Comp Engn, Tehran 1411713116, Iran
[2] Shahrood Univ Technol, Fac Elect Engn, Shahrood 3619995161, Iran
[3] TU Braunschweig, Inst Commun Technol, D-2338106 Braunschweig, Germany
关键词
Resource management; Cams; Long Term Evolution; Wireless communication; Vehicle dynamics; Task analysis; Interference; V2X; AoI; Platoon cooperation; MARL; MANAGEMENT; COMMUNICATION; VEHICLES;
D O I
10.1109/TVT.2023.3259688
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the problem of age of information (AoI) aware radio resource management for a platooning system. Multiple autonomous platoons exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the cooperative awareness messages (CAMs) to their followers while ensuring timely delivery of safety-critical messages to the Road-Side Unit (RSU). To lower the computational load at the RSU and cope with the challenges of dynamic channel conditions, we exploit a distributed resource allocation framework based on multi-agent reinforcement learning (MARL), where each platoon leader (PL) acts as an agent and interacts with the environment to learn its optimal policy. Motivated by the existing literature in RL, we propose two novel MARL frameworks based on the multi-agent deep deterministic policy gradient (MADDPG), named Modified MADDPG, and Modified MADDPG with task decomposition. Both algorithms train two critics with the following goals: A global critic which estimates the global expected reward and motivates the agents toward a cooperating behavior and an exclusive local critic for each agent that estimates the local individual reward. Furthermore, based on the tasks each agent has to accomplish, in the second algorithm, the holistic individual reward of each agent is decomposed into multiple sub-reward functions where task-wise value functions are learned separately. Numerical results indicate our proposed algorithms' effectiveness compared with other contemporary RL frameworks, e.g., federated reinforcement learning (FRL) in terms of AoI performance and CAM message transmission probability.
引用
收藏
页码:9880 / 9896
页数:17
相关论文
共 43 条
  • [21] Collaborative Multi-Agent Deep Reinforcement Learning for Energy-Efficient Resource Allocation in Heterogeneous Mobile Edge Computing Networks
    Xiao, Yang
    Song, Yuqian
    Liu, Jun
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (06) : 6653 - 6668
  • [22] Joint Resource Allocation for UAV-Assisted V2X Communication With Mean Field Multi-Agent Reinforcement Learning
    Xu, Yue
    Zheng, Linjiang
    Wu, Xiao
    Tang, Yi
    Liu, Weining
    Sun, Dihua
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (01) : 1209 - 1223
  • [23] Multi-Agent Reinforcement Learning Based Resource Management in MEC- and UAV-Assisted Vehicular Networks
    Peng, Haixia
    Shen, Xuemin
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (01) : 131 - 141
  • [24] Joint computation offloading and resource allocation based on deep reinforcement learning in C-V2X edge computing
    Hou, Peng
    Jiang, Xiaohan
    Lu, Zhihui
    Li, Bo
    Wang, Zongshan
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22446 - 22466
  • [25] Multi-Agent Low-Bias Reinforcement Learning for Resource Allocation in UAV-Assisted Networks
    Zhou, Shiyang
    Cheng, Yufan
    Lei, Xia
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 1011 - 1016
  • [26] Multi-Agent Deep Reinforcement Learning-Based Power Control and Resource Allocation for D2D Communications
    Xiang, Honglin
    Yang, Yang
    He, Gang
    Huang, Jingfei
    He, Dazhong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (08) : 1659 - 1663
  • [27] Toward Optimal Resource Allocation: A Multi-Agent DRL Based Task Offloading Approach in Multi-UAV-Assisted MEC Networks
    Tariq, Muhammad Naqqash
    Wang, Jingyu
    Raza, Salman
    Siraj, Mohammad
    Altamimi, Majid
    Memon, Saifullah
    IEEE ACCESS, 2024, 12 : 81428 - 81440
  • [28] Deep Multi-Agent Reinforcement Learning for Resource Allocation in D2D Communication Underlaying Cellular Networks
    Zhang, Xu
    Lin, Ziqi
    Ding, Beichen
    Gu, Bo
    Han, Yu
    APNOMS 2020: 2020 21ST ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2020, : 55 - 60
  • [29] Multi-Agent Deep Reinforcement Learning for Interference-Aware Channel Allocation in Non-Terrestrial Networks
    Cho, Yeongi
    Yang, Wooyeol
    Oh, Daesub
    Jo, Han-Shin
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (03) : 936 - 940
  • [30] Energy-Efficient Resource Allocation in Cognitive Radio Networks Under Cooperative Multi-Agent Model-Free Reinforcement Learning Schemes
    Kaur, Amandeep
    Kumar, Krishan
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (03): : 1337 - 1348