A FORMAL DERIVATION ON INTEGRAL GROUP RINGS FOR CYCLIC GROUPS

被引:0
|
作者
Lee, Joongul [1 ]
机构
[1] Hongik Univ, Dept Math Educ, Mapo Gu Wausan Ro 94, Seoul 04066, South Korea
来源
HONAM MATHEMATICAL JOURNAL | 2023年 / 45卷 / 04期
关键词
integral group ring; augmentation ideal;
D O I
10.5831/HMJ.2023.45.4.678
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a cyclic group of prime power order p(k), and let I be the augmentation ideal of the integral group ring Z[G]. We define a derivation on Z/p(k)Z[G], and show that for 2 <= n <= p, an element alpha is an element of I is in I-n if and only if the i-th derivative of the image of alpha in Z/p(k)Z[G] vanishes for 1 <= i <= (n -1).
引用
收藏
页码:678 / 681
页数:4
相关论文
共 50 条
  • [41] Augmentation quotients of free group rings
    Karan, R
    Kumar, D
    ALGEBRA COLLOQUIUM, 2005, 12 (04) : 597 - 606
  • [42] Group rings and Jordan decomposition
    Hales, Alfred W.
    Passi, Inder Bir S.
    GROUPS, RINGS, GROUP RINGS, AND HOPF ALGEBRAS, 2017, 688 : 103 - 111
  • [43] Integral group ring of the McLaughlin simple group
    Bovdi, V. A.
    Konovalov, A. B.
    ALGEBRA & DISCRETE MATHEMATICS, 2007, (02): : 43 - 53
  • [44] Hochschild cohomology of the integral group ring of the semidihedral group
    A. I. Generalov
    Journal of Mathematical Sciences, 2012, 183 (5) : 640 - 657
  • [45] Integral group ring of the Suzuki sporadic simple group
    Bovdi, Victor A.
    Konovalov, Alexander B.
    Marcos, Eduardo Do Nascimento
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 72 (3-4): : 487 - 503
  • [46] On the Structure of Augmentation Quotient Groups for the Generalized Quaternion Group
    Zhou, Qingxia
    You, Hong
    ALGEBRA COLLOQUIUM, 2012, 19 (01) : 137 - 148
  • [47] The lower central series of the unit group of an integral group ring
    Sugandha Maheshwary
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 709 - 712
  • [49] The augmentation ideal in group near-rings
    J. D. P. Meldrum
    J. H. Meyer
    Monatshefte für Mathematik, 2009, 156 : 313 - 323
  • [50] AN APPLICATION OF BLOCKS TO TORSION UNITS IN GROUP RINGS
    Bachle, Andreas
    Margolis, Leo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (10) : 4221 - 4231