A FORMAL DERIVATION ON INTEGRAL GROUP RINGS FOR CYCLIC GROUPS

被引:0
|
作者
Lee, Joongul [1 ]
机构
[1] Hongik Univ, Dept Math Educ, Mapo Gu Wausan Ro 94, Seoul 04066, South Korea
来源
HONAM MATHEMATICAL JOURNAL | 2023年 / 45卷 / 04期
关键词
integral group ring; augmentation ideal;
D O I
10.5831/HMJ.2023.45.4.678
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a cyclic group of prime power order p(k), and let I be the augmentation ideal of the integral group ring Z[G]. We define a derivation on Z/p(k)Z[G], and show that for 2 <= n <= p, an element alpha is an element of I is in I-n if and only if the i-th derivative of the image of alpha in Z/p(k)Z[G] vanishes for 1 <= i <= (n -1).
引用
收藏
页码:678 / 681
页数:4
相关论文
共 50 条