Comparison of symbolic and ordinary powers of parity binomial edge ideals

被引:0
作者
Taghipour, Nadia [1 ]
Bayati, Shamila [1 ]
Rahmati, Farhad [1 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Math & Comp Sci, Tehran, Iran
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 203卷 / 03期
关键词
Clique number; Net-free graph; Parity binomial edge ideal; Symbolic power; MONOMIAL IDEALS; ALGEBRAS; EQUALITY; REPRESENTATIONS; STABILITY; GRAPHS;
D O I
10.1007/s00605-023-01912-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate when symbolic and ordinary powers of the parity binomial edge ideal of a graph fail to be equal. It turns out that if I-G is the parity binomial edge ideal of a graph G, then in each of the following cases the symbolic power I-G((t)) and the ordinary power I-G(t) are not equal for some t: (i) the clique number of G is greater than 3; (ii) G has a net; or (iii) G has a PT as an induced subgraph.
引用
收藏
页码:695 / 710
页数:16
相关论文
共 36 条
  • [1] Packing properties of cubic square-free monomial ideals
    Alilooee, Ali
    Banerjee, Arindam
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (03) : 803 - 813
  • [2] Symbolic powers of edge ideals
    Bahiano, CEN
    [J]. JOURNAL OF ALGEBRA, 2004, 273 (02) : 517 - 537
  • [3] SQUAREFREE VERTEX COVER ALGEBRAS
    Bayati, Shamila
    Rahmati, Farhad
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) : 1518 - 1538
  • [4] ASYMPTOTIC STABILITY OF ASS(M-INM)
    BRODMANN, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 74 (01) : 16 - 18
  • [5] Symbolic powers of codimension two Cohen-Macaulay ideals
    Cooper, Susan
    Fatabbi, Giuliana
    Guardo, Elena
    Lorenzini, Anna
    Migliore, Juan
    Nagel, Uwe
    Seceleanu, Alexandra
    Szpond, Justyna
    Van Tuyl, Adam
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (11) : 4663 - 4680
  • [6] Dao H., 2018, SPRINGER P MATH STAT, V222, P387
  • [7] Dupont LA, 2010, ALGEBRA DISCRET MATH, V10, P64
  • [8] Dupont LA, 2010, MATH SCAND, V106, P88
  • [9] Eisenbud D., 1995, Graduate Texts in Mathematics, V150
  • [10] Ene V., 2021, NAGOYA MATH J, V1-23, P233