DETECTION OF CHRONIC VENOUS INSUFFICIENCY CONDITION USING TRANSFER LEARNING WITH CONVOLUTIONAL NEURAL NETWORKS BASED ON THERMAL IMAGES

被引:0
|
作者
Krishnan, Nithyakalyani [1 ]
Muthu, P. [1 ]
机构
[1] SRM Inst Sci & Technol, Coll Engn & Technol, Dept Biomed Engn, Kattankulathur, Tamil Nadu, India
来源
BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS | 2024年 / 36卷 / 01期
关键词
Varicose Veins; Thermography; Deep Learning; DenseNet-121; Inception_v3; EfficientNet-B0;
D O I
10.4015/S1016237223500308
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Chronic Venous Insufficiency (CVI) is a venous incompetence condition that leads to improper blood circulation from the lower limbs towards the heart. This occurs as a result of blood pooling in the veins of the leg, resulting in twisted, dilated, and tortuous veins. Aging, obesity, prolonged standing or sitting, and lack of mobility are all important causes of the occurrence of this chronic disease. The cost of CVI diagnosis and treatment is extremely high. Infrared thermographic image analysis is used for early detection and reduces the cost of diagnosis. Deep learning (DL) techniques play an important role in early prediction and may aid clinicians in diagnosing CVI. An automated classification model will assist the physician in making a precise diagnosis of the abnormal vein and treating the patient according to the severity of the condition. There is a need for a model that can perform successful classification without the need for pre-processing when compared to the traditional machine learning (ML) methods that depend on ideal manual feature extraction to achieve optimal outcomes. In this research, we recommend the customized DenseNet-121 architecture for CVI detection and compare it with other advanced DL models to determine its efficacy. DenseNet-121 and other pre-trained convolutional neural network models, including EfficientNetB0 and Inception_v3, were trained using a transfer learning strategy. The experimental findings indicate that the proposed modified DenseNet-121 model outperformed other classical methods. The reported results provide evidence of the robustness of the suggested method in addition to the high accuracy that it possessed, as shown by the overall testing accuracy of 97.4%. Thus, this study can be considered as a non-invasive and cost-effective approach for diagnosing chronic venous insufficiency condition in lower extremity.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] FAST AIRCRAFT DETECTION IN SATELLITE IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORKS
    Wu, Hui
    Zhang, Hui
    Zhang, Jinfang
    Xu, Fanjiang
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4210 - 4214
  • [42] Automatic Nuclei Detection in Histopathological Images based on Convolutional Neural Networks
    Alah, Roaa Safi Abed
    Bilgin, Gokhan
    Albayrak, Abdulkadir
    BIOSIGNALS: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 4: BIOSIGNALS, 2019, : 193 - 200
  • [43] EEG-based schizophrenia detection using fusion of effective connectivity maps and convolutional neural networks with transfer learning
    Bagherzadeh, Sara
    Shalbaf, Ahmad
    COGNITIVE NEURODYNAMICS, 2024, 18 (05) : 2767 - 2778
  • [44] Detection of fake face images using lightweight convolutional neural networks with stacking ensemble learning method
    Şafak E.
    Barışçı N.
    PeerJ Computer Science, 2024, 10
  • [45] Detection of fake face images using lightweight convolutional neural networks with stacking ensemble learning method
    Safak, Emre
    Barisci, Necaattin
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [46] Transfer learning based deep convolutional neural network model for pavement crack detection from images
    Jana, S.
    Thangam, S.
    Kishore, Anem
    Kumar, Venkata Sai
    Vandana, Saddapalli
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 1209 - 1223
  • [47] Patch-Based Crack Detection in Black Box Images Using Convolutional Neural Networks
    Park, Somin
    Bang, Seongdeok
    Kim, Hongjo
    Kim, Hyoungkwan
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2019, 33 (03)
  • [48] Differentiation between subchondral insufficiency fractures and advanced osteoarthritis of the knee using transfer learning and an ensemble of convolutional neural networks
    Klontzas, Michail E.
    Vassalou, Evangelia. E.
    Kakkos, George A.
    Spanakis, Konstantinos
    Zibis, Aristeidis
    Marias, Kostas
    Karantanas, Apostolos H.
    INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2022, 53 (06): : 2035 - 2040
  • [49] Detecting Masses in Mammograms using Convolutional Neural Networks and Transfer Learning
    Yemini, Mor
    Zigel, Yaniv
    Lederman, Dror
    2018 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING IN ISRAEL (ICSEE), 2018,
  • [50] Application of Transfer Learning for Object Recognition Using Convolutional Neural Networks
    Diaz Salazar, Nicolas
    Lopez Sotelo, Jesus Alfonso
    Salazar Gomez, Gustavo Andres
    2018 IEEE 1ST COLOMBIAN CONFERENCE ON APPLICATIONS IN COMPUTATIONAL INTELLIGENCE (COLCACI), 2018,