LOG-GAUSSIAN COX PROCESS MODELING OF LARGE SPATIAL LIGHTNING DATA USING SPECTRAL AND LAPLACE APPROXIMATIONS

被引:1
作者
Gelsinger, Megan L. [1 ]
Griffin, Maryclare [2 ]
Matteson, David [1 ]
Guinness, Joseph [1 ]
机构
[1] Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14850 USA
[2] Univ Massachusetts Amherst, Dept Math & Stat, Amherst, MA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Spatial point pattern; Laplace approximation; expectation-maximization; BAYESIAN-INFERENCE; CONVECTIVE INITIATION; PREDICTION; INLA;
D O I
10.1214/22-AOAS1708
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Lightning is a destructive and highly visible product of severe storms, yet there is still much to be learned about the conditions under which lightning is most likely to occur. The GOES-16 and GOES-17 satellites, launched in 2016 and 2018 by NOAA and NASA, collect a wealth of data regarding individual lightning strike occurrence and potentially related atmospheric variables. The acute nature and inherent spatial correlation in lightning data renders standard regression analyses inappropriate. Further, computational considerations are foregrounded by the desire to analyze the immense and rapidly increasing volume of lightning data. We present a new computationally feasible method that combines spectral and Laplace approximations in an EM algorithm, denoted SLEM, to fit the widely popular log-Gaussian Cox process model to large spatial point pattern datasets. In simulations we find SLEM is competitive with contemporary techniques in terms of speed and accuracy. When applied to two lightning datasets, SLEM provides better out-of-sample prediction scores and quicker runtimes, suggesting its particular usefulness for analyzing lightning data which tend to have sparse signals.
引用
收藏
页码:2078 / 2094
页数:17
相关论文
共 40 条
  • [1] Aich Valentin., 2018, EOS T AM GEOPHYS UN, V99, DOI [10.1029/2018EO104583, DOI 10.1029/2018EO104583]
  • [2] inlabru: an R package for Bayesian spatial modelling from ecological survey data
    Bachl, Fabian E.
    Lindgren, Finn
    Borchers, David L.
    Illian, Janine B.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (06): : 760 - 766
  • [3] Banerjee S., 2014, Hierarchical modeling and analysis for spatial data
  • [4] Spatiotemporal prediction for log-Gaussian Cox processes
    Brix, A
    Diggle, PJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 823 - 841
  • [5] Parameterization-based uncertainty in future lightning flash density
    Clark, Spencer K.
    Ward, Daniel S.
    Mahowald, Natalie M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (06) : 2893 - 2901
  • [6] Point process methodology for on-line spatio-temporal disease surveillance
    Diggle, P
    Rowlingson, B
    Su, TL
    [J]. ENVIRONMETRICS, 2005, 16 (05) : 423 - 434
  • [7] DOC NOAA N. and NASA, 2017, Atmos. Res., V3
  • [8] A projected decrease in lightning under climate change
    Finney, Declan L.
    Doherty, Ruth M.
    Wild, Oliver
    Stevenson, David S.
    MacKenzie, Ian A.
    Blyth, Alan M.
    [J]. NATURE CLIMATE CHANGE, 2018, 8 (03) : 210 - +
  • [9] Spatial modeling with spatially varying coefficient processes
    Gelfand, AE
    Kim, HJ
    Sirmans, CF
    Banerjee, S
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) : 387 - 396
  • [10] GELSINGER M. L, 2023, Supplement to "Log-Gaussian cox process modeling of large spatial lightning data using spectral and laplace approximations, DOI [10.1214/22-AOAS1708SUPP, DOI 10.1214/22-AOAS1708SUPP]