Laser Powder Bed Fusion Additive Manufacturing of Maraging Steel: A Review

被引:5
|
作者
Kizhakkinan, Umesh [1 ]
Seetharaman, Sankaranarayanan [2 ]
Raghavan, Nagarajan [3 ]
Rosen, David W. [4 ]
机构
[1] Singapore Univ Technol & Design, Digital Mfg & Design Ctr, Singapore 487372, Singapore
[2] Agcy Sci Technol & Res, Adv Remfg & Technol Ctr, Addit Mfg Industrialisat Grp, 3 Cleantech Loop, Singapore 637143, Singapore
[3] Singapore Univ Technol & Design, Engn Prod Dev, Singapore 487372, Singapore
[4] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore
关键词
additive manufacturing; laser powder bed fusion; maraging steel; heat treatment; microstructure; mechanical properties; MECHANICAL-PROPERTIES; AUSTENITE REVERSION; BUILD ORIENTATION; HEAT-TREATMENT; MICROSTRUCTURAL CHARACTERIZATION; FATIGUE-STRENGTH; RESIDUAL-STRESS; STRAIN FIELDS; BEHAVIOR; PRECIPITATION;
D O I
10.1115/1.4062727
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (PBF/L) is a popular metal additive manufacturing (AM) process used to manufacture complex metallic 3D components. Maraging steel is one of the metals used in AM and it belongs to the class of ultra-high-strength steels used in aerospace and tooling industries. In the PBF/L process, a laser beam is used to melt and fuse the metal powder particles. This creates a high thermal gradient and rapid cooling of the melt pool results in columnar grains. The microstructure of AM part is entirely different from the conventionally manufactured case and this necessitates post-AM heat treatments. The current paper reviews the effects of printing parameters and heat treatment on microstructure and mechanical properties of PBF/L produced maraging steel 300 alloy. Tensile, impact, fracture, and fatigue properties of as-built and heat-treated PBF/L parts are discussed in detail.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Additive manufacturing of maraging steel-H13 bimetals using laser powder bed fusion technique
    Shakerin, Sajad
    Hadadzadeh, Amir
    Amirkhiz, Babak Shalchi
    Shamsdini, Seyedamirreza
    Li, Jian
    Mohammadi, Mohsen
    ADDITIVE MANUFACTURING, 2019, 29
  • [2] Tomography of Laser Powder Bed Fusion Maraging Steel
    Cerezo, Pablo M.
    Aguilera, Jose A.
    Garcia-Gonzalez, Antonio
    Lopez-Crespo, Pablo
    MATERIALS, 2024, 17 (04)
  • [3] On the nature of the anisotropy of Maraging steel (1.2709) in additive manufacturing through powder bed laser-based fusion processing
    Jarfors, Anders E. W.
    Matsushita, Taishi
    Siafakas, Dimitrios
    Stolt, Roland
    MATERIALS & DESIGN, 2021, 204
  • [4] Manufacturing and Optimization of Maraging Steel Fabricated by the Laser Powder Bed Fusion (LPBF) Technique
    Mei, L-f.
    Yin, W.
    Yan, D-b.
    Lei, Z-q.
    Xie, S.
    Lin, L.
    LASERS IN ENGINEERING, 2023, 56 (1-3) : 89 - 111
  • [5] On the nature of the anisotropy of Maraging steel (1.2709) in additive manufacturing through powder bed laser-based fusion processing
    Jarfors, Anders E.W.
    Matsushita, Taishi
    Siafakas, Dimitrios
    Stolt, Roland
    Materials and Design, 2021, 204
  • [6] Austenite Reversion Behavior of Maraging Steel Additive-manufactured by Laser Powder Bed Fusion
    Takata, Naoki
    Ito, Yuya
    Nishida, Ryoya
    Suzuki, Asuka
    Kobashi, Makoto
    Kato, Masaki
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2023, 109 (03): : 201 - 214
  • [7] ADDITIVE MANUFACTURING OF STEEL ALLOYS USING LASER POWDER-BED FUSION
    Jamshidinia, Mahdi
    Sadek, Alber
    Wang, Wesley
    Kelly, Shawn
    ADVANCED MATERIALS & PROCESSES, 2015, 173 (01): : 20 - 24
  • [8] Additive manufacturing of glass with laser powder bed fusion
    Datsiou, Kyriaki Corinna
    Saleh, Ehab
    Spirrett, Fiona
    Goodridge, Ruth
    Ashcroft, Ian
    Eustice, Dave
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (08) : 4410 - 4414
  • [9] A review of powder deposition in additive manufacturing by powder bed fusion
    Avrampos, Panagiotis
    Vosniakos, George-Christopher
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 74 : 332 - 352
  • [10] Alloy design for laser powder bed fusion additive manufacturing: a critical review
    Liu, Zhuangzhuang
    Zhou, Qihang
    Liang, Xiaokang
    Wang, Xiebin
    Li, Guichuan
    Vanmeensel, Kim
    Xie, Jianxin
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (02)