High-temperature polymer-based nanocomposites for high energy storage performance with robust cycling stability

被引:6
|
作者
Chen, Yi-Fan [1 ]
Zheng, Yan-Tao [1 ]
Zhang, Feng-Yuan [2 ]
Liu, Zhi-Gang [2 ]
Zhang, Ling-Yu [1 ]
Yang, Lu [1 ]
Sun, Xin-Di [1 ]
Deng, Yuan [3 ]
Wang, Yao [1 ,3 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[3] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310052, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer-based nanocomposites; Dielectric; Energy storage; Temperature stability;
D O I
10.1007/s12598-023-02312-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-power capacitors are highly demanded in advanced electronics and power systems, where rising concerns on the operating temperatures have evoked the attention on developing highly reliable high-temperature dielectric polymers. Herein, polyetherimide (PEI) filled with highly insulating Al2O3 (AO) nanoparticles dielectric composite films have been fabricated aiming for high thermal stability and reliability operated under high cycling electric field and elevated temperature. At room temperature, incorporating a small fraction of 0.5 vol% AO nanoparticles gives rise to a highest discharged energy density (U-e) of 5.57 J.cm(-3) and efficiency (eta) of 90.9% at 650 MV.m(-1), and a robust cycling stability up to 10(7) cycles at 400 MV.m(-1). Due to the substantially reduced dielectric loss, 2.0 vol% AO/PEI nanocomposite film exhibits excellent high-temperature capacitive performances, delivering U-e similar to 7.33 J.cm(-3) with eta similar to 88.8% under 700 MV.m(-1), and cycling stability up to 10(6) cycles under 400 MV.m(-1) at 100 degrees C, and U-e similar to 5.57 J.cm(-3) with eta similar to 84.7% under 620 MV.m(-1) at 150 degrees C. Molecular dynamic simulations are performed to understand the microscopic mechanism via revealing the polymer relaxation process in the AO/PEI composite at elevated temperatures. Our results are therefore very encouraging for high-temperature high-power capacitor application.
引用
收藏
页码:3682 / 3691
页数:10
相关论文
共 50 条
  • [31] Thermodynamics and economic performance comparison of three high-temperature hot rock cavern based energy storage concepts
    Arabkoohsar, A.
    Andresen, G. B.
    ENERGY, 2017, 132 : 12 - 21
  • [32] Excellent high-temperature energy storage performance of polymer dielectrics through the synergistic action of conjugation effect inhibition and dipole modulation
    Xiong, Jie
    Li, Meng
    Lu, Teng
    Zhang, Ting
    Hu, Mingyou
    Zhang, Meirong
    Xie, Yunchuan
    Tan, Shaobo
    Gong, Honghong
    Zhang, Zhicheng
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [33] Robust High-Temperature Supercapacitors Based on SiC Nanowires
    Li, Xiaoxiao
    Li, Weijun
    Liu, Qiao
    Chen, Shanliang
    Wang, Lin
    Gao, Fengmei
    Shao, Gang
    Tian, Yun
    Lin, Zifeng
    Yang, Weiyou
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (08)
  • [34] Inhibiting molecular motion and charge transport to enhance high-temperature breakdown and energy storage performance of aromatic-free polymer
    Song, Xiaofan
    Min, Daomin
    Liu, Yongbin
    Gao, Jinghui
    Ji, Minzun
    Hao, Yutao
    JOURNAL OF ENERGY STORAGE, 2024, 104
  • [35] Excellent Energy Storage Properties with High-Temperature Stability in Sandwich-Structured Polyimide-Based Composite Films
    Chi, Qingguo
    Gao, Zhiyou
    Zhang, Tiandong
    Zhang, Changhai
    Zhang, Yue
    Chen, Qingguo
    Wang, Xuan
    Lei, Qingquan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) : 748 - 757
  • [36] Microencapsulation of Al-Si-Fe alloys for high-temperature thermal storage with excellent thermal cycling performance
    Zhang, Jixiang
    Zhang, Meijie
    Gu, Huazhi
    Li, Haifeng
    Huang, Ao
    Yang, Shuang
    Long, Tu
    Zhang, Xiliang
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [37] All-organic nanocomposite dielectrics contained with polymer dots for high-temperature capacitive energy storage
    Ding, Jiale
    Xu, Wenhan
    Zhu, Xuanbo
    Liu, Zheng
    Zhang, Yunhe
    Jiang, Zhenhua
    NANO RESEARCH, 2023, 16 (07) : 10183 - 10190
  • [38] Nanofiber-reinforced polymer nanocomposite with hierarchical interfaces for high-temperature dielectric energy storage applications
    Zhi, Jiapeng
    Wang, Jian
    Shen, Zhonghui
    Li, Baowen
    Zhang, Xin
    Nan, Ce-Wen
    SCIENCE CHINA-MATERIALS, 2023, 66 (07) : 2652 - 2661
  • [39] Thermal performance of a binary carbonate molten eutectic salt for high-temperature energy storage applications
    Pan, Gechuanqi
    Wei, Xiaolan
    Yu, Chao
    Lu, Yutong
    Li, Jiang
    Ding, Jing
    Wang, Weilong
    Yan, Jinyue
    APPLIED ENERGY, 2020, 262
  • [40] Enhanced High-Temperature Energy Storage Performance of Polyetherimide through Maleimide Self-Crosslinking
    Yang, Mingcong
    Hu, Shixun
    Li, Qi
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 324 - 328