Ab Initio Molecular Dynamics Simulation Study on Phosphorus/Boron Co-Doped Si Nanocrystals/SiO2 Core/Shell Structures

被引:0
作者
Han, Junnan [1 ]
Li, Dongke [1 ,2 ]
Chen, Jiaming [1 ]
Sun, Teng [1 ]
Wang, Yuhao [1 ]
Pi, Xiaodong [3 ,4 ]
Li, Wei [1 ]
Xu, Ling [1 ]
Xu, Jun [1 ]
Chen, Kunji [1 ]
机构
[1] Nanjing Univ, Jiangsu Prov Key Lab Adv Photon & Elect Mat, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct,Sch Elect Sci &, Nanjing 210093, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Zhejiang Prov Key Lab Power Semicond Mat & Device, Hangzhou 311200, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou Innovat Ctr, Hangzhou 310027, Peoples R China
[4] Zhejiang Univ, Hangzhou Innovat Ctr, Inst Adv Semicond, Hangzhou 310027, Peoples R China
基金
国家重点研发计划;
关键词
SEMICONDUCTOR; BORON;
D O I
10.1021/acs.jpcc.3c04190
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Co-doping in Si nanocrystals (Si NCs) is an intriguing research topic as the co-doping mechanism at the nanoscale is considerably more complex than the bulk Si. In this study, we utilized ab initio molecular dynamics simulations to investigate the impact of phosphorus (P) and boron (B) co-doping on the properties of Si NCs in the SiO2 matrix. Our findings demonstrate that P and B impurities exhibit a tendency to aggregate within sub-interfaces and interfacial regions. Furthermore, introducing B impurities during the co-doping process facilitates bonding between P and B near the interface to form P-B pairs. The results of ionic conductivity derived from the diffusion coefficient indicate that with increasing B concentration, the conductance activation energy first decreases before increasing, implying that the introduction of B impurity leads to greater bonding of P impurity to Si or B atoms. Vibrational simulations and bonding configurations on the structure reveal that P-B pair formation weakens the intensity of the vibrational density peak due to the P-B co-doping process, thereby stabilizing the structure.
引用
收藏
页码:17609 / 17616
页数:8
相关论文
共 48 条
[1]   Localized Surface Plasmon Resonance in Semiconductor Nanocrystals [J].
Agrawal, Ankit ;
Cho, Shin Hum ;
Zandi, Omid ;
Ghosh, Sandeep ;
Johns, Robert W. ;
Milliron, Delia J. .
CHEMICAL REVIEWS, 2018, 118 (06) :3121-3207
[2]   DECAY OF VELOCITY AUTOCORRELATION FUNCTION [J].
ALDER, BJ ;
WAINWRIGHT, TE .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (01) :18-+
[3]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[4]   Doping of silicon nanocrystals [J].
Arduca, Elisa ;
Perego, Michele .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 62 :156-170
[5]   Comparative study on P and B doped nano-crystalline Si multilayers [J].
Chen, Jiaming ;
Li, Dongke ;
Zhang, Yangyi ;
Jiang, Yicheng ;
Xu, Jun ;
Chen, Kunji .
APPLIED SURFACE SCIENCE, 2020, 529
[6]   Role of Ge nanoclusters in the performance of photodetectors compatible with Si technology [J].
Cosentino, S. ;
Mirabella, S. ;
Liu, Pei ;
Le, Son T. ;
Miritello, M. ;
Lee, S. ;
Crupi, I. ;
Nicotra, G. ;
Spinella, C. ;
Paine, D. ;
Terrasi, A. ;
Zaslavsky, A. ;
Pacifici, D. .
THIN SOLID FILMS, 2013, 548 :551-555
[7]   Importance of Particle Tracking and Calculating the Mean-Squared Displacement in Distinguishing Nanopropulsion from Other Processes [J].
Dunderdale, Gary ;
Ebbens, Stephen ;
Fairclough, Patrick ;
Howse, Jonathan .
LANGMUIR, 2012, 28 (30) :10997-11006
[8]   THE NOSE-HOOVER THERMOSTAT [J].
EVANS, DJ ;
HOLIAN, BL .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (08) :4069-4074
[9]   Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J].
Hammer, B ;
Hansen, LB ;
Norskov, JK .
PHYSICAL REVIEW B, 1999, 59 (11) :7413-7421
[10]   Statistical variances of diffusional properties from ab initio molecular dynamics simulations [J].
He, Xingfeng ;
Zhu, Yizhou ;
Epstein, Alexander ;
Mo, Yifei .
NPJ COMPUTATIONAL MATERIALS, 2018, 4