An Efficient Deep Learning with Optimization Algorithm for Emotion Recognition in Social Networks

被引:0
|
作者
Ambika, G. N. [1 ]
Suresh, Yeresime [2 ]
机构
[1] BMS Inst Technol & Management, Dept CSE, Bangalore 560064, India
[2] Ballari Inst Technol & Management, CSE Dept, Ballari 583104, India
关键词
Blue monkey optimization (BMO); deep learning; electroencephalograph (EEG); emotion recognition; human-computer interaction (HCI); radial basis function networks (RBFN);
D O I
10.14569/IJACSA.2023.0140823
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Emotion recognition, or computers' ability to interpret people's emotional states, is a rapidly expanding topic with many life-improving applications. However, most imagebased emotion recognition algorithms have flaws since people can disguise their emotions by changing their facial expressions. As a result, brain signals are being used to detect human emotions with increased precision. However, most proposed systems could do better because electroencephalogram (EEG) signals are challenging to classify using typical machine learning and deep recommendation systems, online learning, and data mining all benefit from emotion recognition in photos. However, there are challenges with removing irrelevant text aspects during emotion extraction. As a consequence, emotion prediction is inaccurate. This paper proposes Radial Basis Function Networks (RBFN) with Blue Monkey Optimization to address such challenges in human emotion recognition (BMO). The proposed RBFN-BMO detects faces on large-scale images before analyzing face landmarks to predict facial expressions for emotional acknowledgment. Patch cropping and neural networks comprise the two stages of the RBFN-BMO. Pre-processing, feature extraction, rating, and organizing are the four categories of the proposed model. In the ranking stage, appropriate features are extracted from the pre-processed information, the data are then classed, and accurate output is obtained from the classification phase. This study compares the results of the proposed RBFNBMO algorithm to the previous state-of-the-art algorithms using publicly available datasets derived from the RBFN-BMO model. Furthermore, we demonstrated the efficacy of our framework in comparison to previous works. The results show that the projected method can progress the rate of emotion recognition on datasets of various sizes.
引用
收藏
页码:206 / 215
页数:10
相关论文
共 50 条
  • [31] A deep reinforcement learning-based intelligent QoS optimization algorithm for efficient routing in vehicular networks
    Ye, Shitong
    Xu, Lijuan
    Xu, Zhiming
    Wang, Feng
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 107 : 317 - 331
  • [32] An Efficient Face Recognition Algorithm Based on Deep Learning for Unmanned Supermarket
    Zhou, Fo Zhi
    Wan, Guo Chun
    Kuang, Yong Kang
    Tong, Mei Song
    2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 715 - 718
  • [33] Emotion Recognition in Speech with Deep Learning Architectures
    Erdal, Mehmet
    Kaechele, Markus
    Schwenker, Friedhelm
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, 2016, 9896 : 298 - 311
  • [34] Spoken Emotion Recognition Using Deep Learning
    Albornoz, E. M.
    Sanchez-Gutierrez, M.
    Martinez-Licona, F.
    Rufiner, H. L.
    Goddard, J.
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 104 - 111
  • [35] Emotion Recognition with Refined Labels for Deep Learning
    Zhang, Su
    Guan, Cuntai
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 108 - 111
  • [36] Deep Learning and Audio Based Emotion Recognition
    Demir, Asli
    Atila, Orhan
    Sengur, Abdulkadir
    2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP 2019), 2019,
  • [37] Emotion Recognition Using Multimodal Deep Learning
    Liu, Wei
    Zheng, Wei-Long
    Lu, Bao-Liang
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 521 - 529
  • [38] Deep Continual Learning for Emerging Emotion Recognition
    Thuseethan, Selvarajah
    Rajasegarar, Sutharshan
    Yearwood, John
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4367 - 4380
  • [39] Deep Learning Model for Facial Emotion Recognition
    Pathak, Ajeet Ram
    Bhalsing, Somesh
    Desai, Shivani
    Gandhi, Monica
    Patwardhan, Pranathi
    PROCEEDINGS OF ICETIT 2019: EMERGING TRENDS IN INFORMATION TECHNOLOGY, 2020, 605 : 543 - 558
  • [40] Emotion Recognition on Multimodal with Deep Learning and Ensemble
    Dharma, David Adi
    Zahra, Amalia
    International Journal of Advanced Computer Science and Applications, 2022, 13 (12): : 656 - 663