An Efficient Deep Learning with Optimization Algorithm for Emotion Recognition in Social Networks

被引:0
作者
Ambika, G. N. [1 ]
Suresh, Yeresime [2 ]
机构
[1] BMS Inst Technol & Management, Dept CSE, Bangalore 560064, India
[2] Ballari Inst Technol & Management, CSE Dept, Ballari 583104, India
关键词
Blue monkey optimization (BMO); deep learning; electroencephalograph (EEG); emotion recognition; human-computer interaction (HCI); radial basis function networks (RBFN);
D O I
10.14569/IJACSA.2023.0140823
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Emotion recognition, or computers' ability to interpret people's emotional states, is a rapidly expanding topic with many life-improving applications. However, most imagebased emotion recognition algorithms have flaws since people can disguise their emotions by changing their facial expressions. As a result, brain signals are being used to detect human emotions with increased precision. However, most proposed systems could do better because electroencephalogram (EEG) signals are challenging to classify using typical machine learning and deep recommendation systems, online learning, and data mining all benefit from emotion recognition in photos. However, there are challenges with removing irrelevant text aspects during emotion extraction. As a consequence, emotion prediction is inaccurate. This paper proposes Radial Basis Function Networks (RBFN) with Blue Monkey Optimization to address such challenges in human emotion recognition (BMO). The proposed RBFN-BMO detects faces on large-scale images before analyzing face landmarks to predict facial expressions for emotional acknowledgment. Patch cropping and neural networks comprise the two stages of the RBFN-BMO. Pre-processing, feature extraction, rating, and organizing are the four categories of the proposed model. In the ranking stage, appropriate features are extracted from the pre-processed information, the data are then classed, and accurate output is obtained from the classification phase. This study compares the results of the proposed RBFNBMO algorithm to the previous state-of-the-art algorithms using publicly available datasets derived from the RBFN-BMO model. Furthermore, we demonstrated the efficacy of our framework in comparison to previous works. The results show that the projected method can progress the rate of emotion recognition on datasets of various sizes.
引用
收藏
页码:206 / 215
页数:10
相关论文
共 50 条
  • [21] Deep Learning Based Facial Emotion Recognition System
    Ozdemir, Mehmet Akif
    Elagoz, Berkay
    Soy, Aysegul Alaybeyoglu
    Akan, Aydin
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [22] Music Emotion Recognition Based on Deep Learning: A Review
    Jiang, Xingguo
    Zhang, Yuchao
    Lin, Guojun
    Yu, Ling
    IEEE ACCESS, 2024, 12 : 157716 - 157745
  • [23] Evaluating deep learning architectures for Speech Emotion Recognition
    Fayek, Haytham M.
    Lech, Margaret
    Cavedon, Lawrence
    NEURAL NETWORKS, 2017, 92 : 60 - 68
  • [24] Deep Learning based Emotion Recognition IoT System
    Yokoo, Kentaro
    Atsumi, Masahiko
    Tanaka, Kei
    Wang, Haoqing
    Meng, Lin
    2020 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2020, : 203 - 207
  • [25] Annotation Efficiency in Multimodal Emotion Recognition with Deep Learning
    Zhu, Lili
    Spachos, Petros
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 560 - 565
  • [26] EMOTION RECOGNITION USING DEEP LEARNING
    Priya, R. N. Beena
    Hanmandlu, M.
    Vasikarla, Shantaram
    2021 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2021,
  • [27] Respiration-based emotion recognition with deep learning
    Zhang, Qiang
    Chen, Xianxiang
    Zhan, Qingyuan
    Yang, Ting
    Xia, Shanhong
    COMPUTERS IN INDUSTRY, 2017, 92-93 : 84 - 90
  • [28] Research on face emotion recognition algorithm based on deep learning neural network
    Chen Y.
    Zhang M.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [29] Deep ganitrus algorithm for speech emotion recognition
    Shukla, Shilpi
    Jain, Madhu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (05) : 5353 - 5368
  • [30] Deep Learning for EEG-based Emotion Recognition: A Survey
    Li J.-Y.
    Du X.-B.
    Zhu Z.-L.
    Deng X.-M.
    Ma C.-X.
    Wang H.-A.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (01): : 255 - 276