Machine Learning Automated Analysis of Enormous Synchrotron X-ray Diffraction Datasets

被引:5
|
作者
Zhao, Xiaodong [1 ,2 ]
Luo, YiXuan [3 ]
Liu, Juejing [1 ,4 ]
Liu, Wenjun [5 ]
Rosso, Kevin M. [1 ]
Guo, Xiaofeng [2 ,4 ]
Geng, Tong [3 ]
Li, Ang [1 ]
Zhang, Xin [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[2] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
[3] Univ Rochester, Dept Elect & Comp Engn, New York, NY 14627 USA
[4] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA
[5] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 30期
基金
美国国家科学基金会;
关键词
IDENTIFICATION;
D O I
10.1021/acs.jpcc.3c03572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
X-raydiffraction (XRD) data analysis can be a time-consumingandlaborious task. Deep neural network (DNN) based models trained withsynthetic XRD patterns have been proven to be a highly efficient,accurate, and automated method for analyzing common XRD data collectedfrom solid samples in ambient environments. However, it remains unclearwhether synthetic XRD-based models can be effective in solving micro(& mu;)-XRDmapping data for in situ experiments involving liquid phases, whichalways have lower quality and significant artifacts. In this study,we collected & mu;-XRD mapping data from a LaCl3-calcitehydrothermal fluid system and trained two categories of models toanalyze the experimental XRD patterns. The models trained solely withsynthetic XRD patterns showed low accuracy (as low as 64%) when solvingexperimental & mu;-XRD mapping data. However, the accuracy of theDNN models significantly improved (90% or above) when we trained themwith a data set containing both synthetic and a small number of labeledexperimental & mu;-XRD patterns. This study highlights the importanceof labeled experimental patterns in training DNN models to solve & mu;-XRDmapping data from in situ experiments involving liquid phases.
引用
收藏
页码:14830 / 14838
页数:9
相关论文
共 50 条
  • [21] Synchrotron X-ray diffraction and fluorescence study of the astrolabe
    Michael Notis
    Brian Newbury
    Bruce Stephenson
    G. Brian Stephenson
    Applied Physics A, 2013, 111 : 129 - 134
  • [22] Application of machine learning to X-ray diffraction-based classification
    Zhao, Bi
    Wolter, Scott
    Greenberg, Joel A.
    ANOMALY DETECTION AND IMAGING WITH X-RAYS (ADIX) III, 2018, 10632
  • [23] Synchrotron X-ray powder diffraction data of atorvastatin
    Antonio, Selma Gutierrez
    Benini, Fernanda Ribeiro
    Ferreira, Fabio Furlan
    Pires Rosa, Paulo Cesar
    Paiva-Santos, Carlos de Oliveira
    POWDER DIFFRACTION, 2008, 23 (04) : 350 - 355
  • [25] X-ray diffraction microtomography using synchrotron radiation
    Barroso, RC
    Lopes, RT
    de Jesus, EFO
    Oliveira, LF
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 471 (1-2): : 75 - 79
  • [26] Microfocus Diffraction with X-ray Synchrotron Radiation.
    Riekel, Christian
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2004, 60 : S2 - S2
  • [27] Automated X-Ray Diffraction of Irradiated Materials
    Rodman, John
    Lin, Yuewei
    Sprouster, David
    Ecker, Lynne
    Yoo, Shinjae
    2017 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2017,
  • [28] DATA COLLECTION, ANALYSIS AND ACCURACY IN SYNCHROTRON X-RAY POWDER DIFFRACTION.
    Cox, D. E.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C393 - C393
  • [29] Profile analysis of the supersatellite reflections in Labradorite - A synchrotron X-ray diffraction study
    Kalning, M.
    Dorna, V.
    Press, W.
    Kek, S.
    Zeitschrift fuer Kristallographie, 212 (08):
  • [30] Profile analysis of the supersatellite reflections in labradorite - A synchrotron X-ray diffraction study
    Kalning, M
    Dorna, V
    Press, W
    Kek, S
    Boysen, H
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1997, 212 (08): : 545 - 549