Machine Learning Automated Analysis of Enormous Synchrotron X-ray Diffraction Datasets

被引:5
|
作者
Zhao, Xiaodong [1 ,2 ]
Luo, YiXuan [3 ]
Liu, Juejing [1 ,4 ]
Liu, Wenjun [5 ]
Rosso, Kevin M. [1 ]
Guo, Xiaofeng [2 ,4 ]
Geng, Tong [3 ]
Li, Ang [1 ]
Zhang, Xin [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[2] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
[3] Univ Rochester, Dept Elect & Comp Engn, New York, NY 14627 USA
[4] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA
[5] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 30期
基金
美国国家科学基金会;
关键词
IDENTIFICATION;
D O I
10.1021/acs.jpcc.3c03572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
X-raydiffraction (XRD) data analysis can be a time-consumingandlaborious task. Deep neural network (DNN) based models trained withsynthetic XRD patterns have been proven to be a highly efficient,accurate, and automated method for analyzing common XRD data collectedfrom solid samples in ambient environments. However, it remains unclearwhether synthetic XRD-based models can be effective in solving micro(& mu;)-XRDmapping data for in situ experiments involving liquid phases, whichalways have lower quality and significant artifacts. In this study,we collected & mu;-XRD mapping data from a LaCl3-calcitehydrothermal fluid system and trained two categories of models toanalyze the experimental XRD patterns. The models trained solely withsynthetic XRD patterns showed low accuracy (as low as 64%) when solvingexperimental & mu;-XRD mapping data. However, the accuracy of theDNN models significantly improved (90% or above) when we trained themwith a data set containing both synthetic and a small number of labeledexperimental & mu;-XRD patterns. This study highlights the importanceof labeled experimental patterns in training DNN models to solve & mu;-XRDmapping data from in situ experiments involving liquid phases.
引用
收藏
页码:14830 / 14838
页数:9
相关论文
共 50 条
  • [11] Feature extraction and spatial imaging of synchrotron radiation X-ray diffraction patterns using unsupervised machine learning
    Kutsukake, Kentaro
    Kamioka, Takefumi
    Matsui, Kota
    Takeuchi, Ichiro
    Segi, Takashi
    Sasaki, Takuo
    Fujikawa, Seiji
    Takahasi, Masamitu
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS-METHODS, 2024, 4 (01):
  • [12] Deep learning for visualization and novelty detection in large X-ray diffraction datasets
    Lars Banko
    Phillip M. Maffettone
    Dennis Naujoks
    Daniel Olds
    Alfred Ludwig
    npj Computational Materials, 7
  • [13] Synchrotron X-ray Analysis and Diffraction Mapping in Art and Archaeology.
    Hodeau, J. L.
    Anne, M.
    Bardies, I.
    Dooryhee, E.
    Martinetto, P.
    Rondot, S.
    Salomon, J.
    Vaughan, G. B. M.
    Walter, P.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2004, 60 : S52 - S52
  • [14] Advanced strain analysis by high energy synchrotron X-ray diffraction
    Korsunsky, AM
    James, KE
    ECRS 6: PROCEEDINGS OF THE 6TH EUROPEAN CONFERENCE ON RESIDUAL STRESSES, 2002, 404-7 : 329 - 334
  • [15] Automated Analysis of Muscle X-ray Diffraction Imaging with MCMC
    Williams, C. David
    Balazinska, Magdalena
    Daniel, Thomas L.
    BIOMEDICAL DATA MANAGEMENT AND GRAPH ONLINE QUERYING, 2016, 9579 : 126 - 133
  • [16] Synchrotron X-ray diffraction for pyrolytic magnetic carbon
    Kamishima, K.
    Noda, T.
    Kadonome, F.
    Kakizaki, K.
    Hiratsuka, N.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : E346 - E348
  • [17] Studies of monolayers using synchrotron X-ray diffraction
    Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3112, United States
    Curr. Opin. Solid State Mater. Sci., 5 (557-562):
  • [18] Oxides: neutron and synchrotron X-ray diffraction studies
    Sosnowska, IM
    Shiojiri, M
    JOURNAL OF ELECTRON MICROSCOPY, 1999, 48 (06): : 681 - 687
  • [19] Studies of monolayers using synchrotron X-ray diffraction
    Dutta, P
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1997, 2 (05): : 557 - 562
  • [20] Synchrotron X-ray diffraction and fluorescence study of the astrolabe
    Notis, Michael
    Newbury, Brian
    Stephenson, Bruce
    Stephenson, G. Brian
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 111 (01): : 129 - 134